Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Overview

Predict-The-Price-Of-Books

For this task, a big dataset which consists of book of different genres and authors was utilized. The provided dataset included various book features, such as Author, Edition, Reviews, etc. Those features have been used as regressors in order to predict the price of books, using various proposed methods and models.

Author: Nikolas Petrou, MSc in Data Science

Technical-Report and Code Availability

  • A complete file-folder guide is located in the folder-file guide folder
  • The technical report and analysis of the work is available and located in report.pdf file
  • The implementation and code of the project is located in the code files folder

Dataset Overview

Regarding the data of this work, there is an online competition for this task, which has been up since 27/09/2019. Currently, the competition has 3579 participants in total. The data was downloaded directly from MachineHack. There were two files forthe train and test sets. The training and test sets included 6237 and 1560 records respectively. In addition, the values of the target variable (Price) were not included in the test set, as the evaluation of the test set is employed through the website of MachineHack.

Methodology

Some of the key methods which were used throughout the work are:

  • Visualization
  • TF-IDF and LDA Topic Extraction
  • Text-tranlsation using Google Trasnlate Ajax API
  • Cyclical feature encoding for time-based feature extraction
  • Price Prediction using different conventional and advanced algorithms (e.g. GBM, RF, SVM, CatBoost, LightGBM)

An abstract methodology scheme of the work is illustrated in the following Figure.

Summarizing, firstly the exploratory data understanding process was commenced. Each feature was assessed in order to obtain a better understanding of what it represents and how it could affect book pricing. Next, each future was brought into a format that was appropriate for model development. Following, through visualization, it was examined how the different features were correlated to the dependent-target variable. Furthermore, the processed data were used to implement the employed models. The prediction-modelling phase was conducted with two different approaches. Finally, the whole methodology procedure followed a cyclical behaviour, until the final prediction model was implemented.

Owner
Nikolas Petrou
M.Sc. Data Science student, University of Cyprus (UCY) Research Assistant at the Laboratory of Internet Computing (LInC) B.Sc degree in Computer Science
Nikolas Petrou
FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction

FaceExtraction FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction Occlusions often occur in face images in the wild, tr

16 Dec 14, 2022
Convnext-tf - Unofficial tensorflow keras implementation of ConvNeXt

ConvNeXt Tensorflow This is unofficial tensorflow keras implementation of ConvNe

29 Oct 06, 2022
Simple reference implementation of GraphSAGE.

Reference PyTorch GraphSAGE Implementation Author: William L. Hamilton Basic reference PyTorch implementation of GraphSAGE. This reference implementat

William L Hamilton 861 Jan 06, 2023
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022
This is the latest version of the PULP SDK

PULP-SDK This is the latest version of the PULP SDK, which is under active development. The previous (now legacy) version, which is no longer supporte

78 Dec 07, 2022
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 07, 2023
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
Churn prediction

Churn-prediction Churn-prediction Data preprocessing:: Label encoder is used to normalize the categorical variable Data Transformation:: For each data

1 Sep 28, 2022
Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation

Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation Introduction WAKD is a PyTorch implementation for our ICPR-2022 pap

2 Oct 20, 2022
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023
Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning

Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning Code for the paper Harmonious Textual Layout Generation over Nat

7 Aug 09, 2022
[CVPR'21] Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild

IVOS-W Paper Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild Zhaoyun Yin, Jia Zheng, Weixin Luo, Shenhan Qian, Hanli

SVIP Lab 38 Dec 12, 2022
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

張致強 1 Feb 09, 2022
A naive ROS interface for visualDet3D.

YOLO3D ROS Node This repo contains a Monocular 3D detection Ros node. Base on https://github.com/Owen-Liuyuxuan/visualDet3D All parameters are exposed

Yuxuan Liu 19 Oct 08, 2022
Yolox-bytetrack-sample - Python sample of MOT (Multiple Object Tracking) using YOLOX and ByteTrack

yolox-bytetrack-sample YOLOXとByteTrackを用いたMOT(Multiple Object Tracking)のPythonサン

KazuhitoTakahashi 12 Nov 09, 2022
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022