IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

Related tags

Deep Learningijon
Overview

IJON SPACE EXPLORER

loading-ag-167

IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotation, one can help the fuzzer solve previously unsolvable challenges. For example, with this extension, a fuzzer is able to play and solve games such as Super Mario Bros. or resolve more complex patterns such as hash map lookups.

More data and the results of the experiments can be found here:

Compile AFL+IJON

after compiling AFL as usually, run:

cd llvm_mode
LLVM_CONFIG=llvm-config-6.0 CC=clang-6.0 make

Annotations

When using afl-clang-fastwith Ijon, you can use the following annotations & helper functions in you program to guide AFL.

void ijon_xor_state(ijon_u32_t);
void ijon_push_state(ijon_u32_t);

void ijon_map_inc(ijon_u32_t);
void ijon_map_set(ijon_u32_t);

ijon_u32_t ijon_strdist(char* a,char* b);
ijon_u32_t ijon_memdist(char* a,char* b, ijon_size_t len);

void ijon_max(ijon_u32_t addr, ijon_u64_t val);

void ijon_min(ijon_u32_t addr, ijon_u64_t val);

ijon_u64_t ijon_simple_hash(ijon_u64_t val);
ijon_u32_t ijon_hashint(ijon_u32_t old, ijon_u32_t val);
ijon_u32_t ijon_hashstr(ijon_u32_t old, char* val);
ijon_u32_t ijon_hashmem(ijon_u32_t old, char* val, ijon_size_t len);

uint32_t ijon_hashstack(); //warning, can be flaky as stackunwinding is nontrivial

void ijon_enable_feedback();
void ijon_disable_feedback();

#define _IJON_CONCAT(x, y) x##y
#define _IJON_UNIQ_NAME() IJON_CONCAT(temp,__LINE__)
#define _IJON_ABS_DIST(x,y) ((x)<(y) ? (y)-(x) : (x)-(y))

#define IJON_BITS(x) ((x==0)?{0}:__builtin_clz(x))
#define IJON_INC(x) ijon_map_inc(ijon_hashstr(__LINE__,__FILE__)^(x))
#define IJON_SET(x) ijon_map_set(ijon_hashstr(__LINE__,__FILE__)^(x))

#define IJON_CTX(x) ({ uint32_t hash = hashstr(__LINE__,__FILE__); ijon_xor_state(hash); __typeof__(x) IJON_UNIQ_NAME() = (x); ijon_xor_state(hash); IJON_UNIQ_NAME(); })

#define IJON_MAX(x) ijon_max(ijon_hashstr(__LINE__,__FILE__),(x))
#define IJON_MIN(x) ijon_max(ijon_hashstr(__LINE__,__FILE__),0xffffffffffffffff-(x))
#define IJON_CMP(x,y) IJON_INC(__builtin_popcount((x)^(y)))
#define IJON_DIST(x,y) ijon_min(ijon_hashstr(__LINE__,__FILE__), _IJON_ABS_DIST(x,y))
#define IJON_STRDIST(x,y) IJON_SET(ijon_hashint(ijon_hashstack(), ijon_strdist(x,y)))

TIPS on using IJON

You typically want to run AFL with IJON extension in slave mode with multiple other fuzzer instances. If IJON solved the challenging structure, the other fuzzers will pick up the resulting inputs, while ignoring the intermediate queue entries that IJON produced.

If you make extensive use of the IJON_MIN or IJON_MAX primitives, you might want to disable normal instrumentation using AFL_INST_RATIO=1 make.

If, for some reason you want to use the version exactly from the paper (even though it contains known bugs), please use this commit

Owner
Chair for Sys­tems Se­cu­ri­ty
Chair for Sys­tems Se­cu­ri­ty
Scientific Computation Methods in C and Python (Open for Hacktoberfest 2021)

Sci - cpy README is a stub. Do expand it. Objective This repository is meant to be a ready reference for scientific computation methods. Do ⭐ it if yo

Sandip Dutta 7 Oct 12, 2022
QA-GNN: Question Answering using Language Models and Knowledge Graphs

QA-GNN: Question Answering using Language Models and Knowledge Graphs This repo provides the source code & data of our paper: QA-GNN: Reasoning with L

Michihiro Yasunaga 434 Jan 04, 2023
PyTorch Implementation for Deep Metric Learning Pipelines

Easily Extendable Basic Deep Metric Learning Pipeline Karsten Roth ([email 

Karsten Roth 543 Jan 04, 2023
Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Accompanying code for the paper Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Kevin Wilkinghoff 6 Dec 01, 2022
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
This is the code repository for the paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (NeurIPS 2021).

Code Repository for the Paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (To appear in: Proceedings of NeurIPS20

1 Oct 03, 2022
CLEAR algorithm for multi-view data association

CLEAR: Consistent Lifting, Embedding, and Alignment Rectification Algorithm The Matlab, Python, and C++ implementation of the CLEAR algorithm, as desc

MIT Aerospace Controls Laboratory 30 Jan 02, 2023
PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation Winner method of the ICCV-2021 SemKITTI-DVPS Challenge. [arxiv] [

Yuan Haobo 38 Jan 03, 2023
S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)

S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss) This is the official pytorch implementation of our paper: "S2-BNN: Bridging th

Zhiqiang Shen 52 Dec 24, 2022
🦕 NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano

🦕 nanosaur NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano Website: nanosaur.ai Do you need an help? Discord For tech

NanoSaur 162 Dec 09, 2022
toroidal - a lightweight transformer library for PyTorch

toroidal - a lightweight transformer library for PyTorch Toroidal transformers are of smaller size and lower weight than the more common E-I types. Th

MathInf GmbH 64 Jan 07, 2023
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

Medical Machine Learning Lab - University of Münster 57 Nov 12, 2022
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
ConformalLayers: A non-linear sequential neural network with associative layers

ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo

Prograf-UFF 5 Sep 28, 2022
Powerful unsupervised domain adaptation method for dense retrieval.

Powerful unsupervised domain adaptation method for dense retrieval

Ubiquitous Knowledge Processing Lab 191 Dec 28, 2022
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
TLoL (Python Module) - League of Legends Deep Learning AI (Research and Development)

TLoL-py - League of Legends Deep Learning Library TLoL-py is the Python component of the TLoL League of Legends deep learning library. It provides a s

7 Nov 29, 2022
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022