This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

Overview

1st place solution in CCF BDCI 2021 ULSEG challenge

This is the source code of the 1st place solution for ultrasound image angioma segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

[Challenge leaderboard 🏆 ]

1 Pipeline of our solution

Our solution includes data pre-processing, network training, ensemble inference and data post-processing.

drawing

Ultrasound images of hemangioma segmentation framework

1.1 Data pre-processing

To improve our performance on the leaderboard, 5-fold cross validation is used to evaluate the performance of our proposed method. In our opinion, it is necessary to keep the size distribution of tumor in the training and validation sets. We calculate the tumor area for each image and categorize the tumor size into classes: 1) less than 3200 pixels, 2) less than 7200 pixels and greater than 3200 pixels, and 3) greater than 7200 pixels. These two thresholds, 3200 pixels and 7200 pixels, are close to the tertiles. We divide images in each size grade group into 5 folds and combined different grades of single fold into new single fold. This strategy ensured that final 5 folds had similar size distribution.

drawing

Tumors of different sizes

1.2 Network training

Due to the small size of the training set, for this competition, we chose a lightweight network structure: Linknet with efficientnet-B6 encoder. Following methods are performed in data augmentation (DA): 1) horizontal flipping, 2) vertical flipping, 3) random cropping, 4) random affine transformation, 5) random scaling, 6) random translation, 7) random rotation, and 8) random shearing transformation. In addition, one of the following methods was randomly selected for enhanced data augmentation (EDA): 1) sharpening, 2) local distortion, 3) adjustment of contrast, 4) blurring (Gaussian, mean, median), 5) addition of Gaussian noise, and 6) erasing.

1.3 Ensemble inference

We ensemble five models (five folds) and do test time augmentation (TTA) for each model. TTA generally improves the generalization ability of the segmentation model. In our framework, the TTA includes vertical flipping, horizontal flipping, and rotation of 180 degrees for the segmentation task.

1.4 Data post-processing

We post-processe the obtained binary mask by removing small isolated points (RSIP) and edge median filtering (EMF) . The edge part of our predicted tumor is not smooth enough, which is not quite in line with the manual annotation of the physician, so we adopt a small trick, i.e., we do a median filtering specifically for the edge part, and the experimental results show that this can improve the accuracy of tumor segmentation.

2 Segmentation results on 2021 CCF BDCI dataset

We test our method on 2021 CCD BDCI dataset (215 for training and 107 for testing). The segmentation results of 5-fold CV based on "Linknet with efficientnet-B6 encoder" are as following:

fold Linknet Unet Att-Unet DeeplabV3+ Efficient-b5 Efficient-b6 Resnet-34 DA EDA TTA RSIP EMF Dice (%)
1 85.06
1 84.48
1 84.72
1 84.93
1 86.52
1 86.18
1 86.91
1 87.38
1 88.36
1 89.05
1 89.20
1 89.52
E 90.32

3 How to run this code?

Here, we split the whole process into 5 steps so that you can easily replicate our results or perform the whole pipeline on your private custom dataset.

  • step0, preparation of environment
  • step1, run the script preprocess.py to perform the preprocessing
  • step2, run the script train.py to train our model
  • step3, run the script inference.py to inference the test data.
  • step4, run the script postprocess.py to perform the preprocessing.

You should prepare your data in the format of 2021 CCF BDCI dataset, this is very simple, you only need to prepare: two folders store png format images and masks respectively. You can download them from [Homepage].

The complete file structure is as follows:

  |--- CCF-BDCI-2021-ULSEG-Rank1st
      |--- segmentation_models_pytorch_4TorchLessThan120
          |--- ...
          |--- ...
      |--- saved_model
          |--- pred
          |--- weights
      |--- best_model
          |--- best_model1.pth
          |--- ...
          |--- best_model5.pth
      |--- train_data
          |--- img
          |--- label
          |--- train.csv
      |--- test_data
          |--- img
          |--- predict
      |--- dataset.py
      |--- inference.py
      |--- losses.py
      |--- metrics.py
      |--- ploting.py
      |--- preprocess.py
      |--- postprocess.py
      |--- util.py
      |--- train.py
      |--- visualization.py
      |--- requirement.txt

3.1 Step0 preparation of environment

We have tested our code in following environment:

For installing these, run the following code:

pip install -r requirements.txt

3.2 Step1 preprocessing

In step1, you should run the script and train.csv can be generated under train_data fold:

python preprocess.py \
--image_path="./train_data/label" \
--csv_path="./train_data/train.csv"

3.3 Step2 training

With the csv file train.csv, you can directly perform K-fold cross validation (default is 5-fold), and the script uses a fixed random seed to ensure that the K-fold cv of each experiment is repeatable. Run the following code:

python train.py \
--input_channel=1 \
--output_class=1 \
--image_resolution=256 \
--epochs=100 \
--num_workers=2 \
--device=0 \
--batch_size=8 \
--backbone="efficientnet-b6" \
--network="Linknet" \
--initial_learning_rate=1e-7 \
--t_max=110 \
--folds=5 \
--k_th_fold=1 \
--fold_file_list="./train_data/train.csv" \
--train_dataset_path="./train_data/img" \
--train_gt_dataset_path="./train_data/label" \
--saved_model_path="./saved_model" \
--visualize_of_data_aug_path="./saved_model/pred" \
--weights_path="./saved_model/weights" \
--weights="./saved_model/weights/best_model.pth" 

By specifying the parameter k_th_fold from 1 to folds and running repeatedly, you can complete the training of all K folds. After each fold training, you need to copy the .pth file from the weights path to the best_model folder.

3.4 Step3 inference (test)

Before running the script, make sure that you have generated five models and saved them in the best_model folder. Run the following code:

python inference.py \
--input_channel=1 \
--output_class=1 \
--image_resolution=256 \
--device=0 \
--backbone="efficientnet-b6" \
--network="Linknet" \
--weights1="./saved_model/weights/best_model1.pth" \
--weights2="./saved_model/weights/best_model2.pth" \
--weights3="./saved_model/weights/best_model3.pth" \
--weights4="./saved_model/weights/best_model4.pth" \
--weights5="./saved_model/weights/best_model5.pth" \
--test_path="./test_data/img" \
--saved_path="./test_data/predict" 

The results of the model inference will be saved in the predict folder.

3.5 Step4 postprocessing

Run the following code:

python postprocess.py \
--image_path="./test_data/predict" \
--threshood=50 \
--kernel=20 

Alternatively, if you want to observe the overlap between the predicted result and the original image, we also provide a visualization script visualization.py. Modify the image path in the code and run the script directly.

drawing

Visualization of tumor margins

4 Acknowledgement

  • Thanks to the organizers of the 2021 CCF BDCI challenge.
  • Thanks to the 2020 MICCCAI TNSCUI TOP 1 for making the code public.
  • Thanks to qubvel, the author of smg and ttach, all network and TTA used in this code come from his implement.
Owner
Chenxu Peng
Data Science, Deep Learning
Chenxu Peng
pytorch bert intent classification and slot filling

pytorch_bert_intent_classification_and_slot_filling 基于pytorch的中文意图识别和槽位填充 说明 基本思路就是:分类+序列标注(命名实体识别)同时训练。 使用的预训练模型:hugging face上的chinese-bert-wwm-ext 依

西西嘛呦 33 Dec 15, 2022
This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras)

Yogi-Optimizer_Keras This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras) The NeurIPS-Paper can be found here: http://papers.nips.c

14 Sep 13, 2022
🎁 3,000,000+ Unsplash images made available for research and machine learning

The Unsplash Dataset The Unsplash Dataset is made up of over 250,000+ contributing global photographers and data sourced from hundreds of millions of

Unsplash 2k Jan 03, 2023
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

2 Jan 11, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
Video Frame Interpolation with Transformer (CVPR2022)

VFIformer Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer Dependencies python = 3.8 pytorch = 1.8.0

DV Lab 63 Dec 16, 2022
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
Bianace Prediction Pytorch Model

Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t

RoyYang 4 Jul 20, 2022
A tool to visualise the results of AlphaFold2 and inspect the quality of structural predictions

AlphaFold Analyser This program produces high quality visualisations of predicted structures produced by AlphaFold. These visualisations allow the use

Oliver Powell 3 Nov 13, 2022
An all-in-one application to visualize multiple different local path planning algorithms

Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)

Abdur Javaid 47 Dec 30, 2022
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
A modular, research-friendly framework for high-performance and inference of sequence models at many scales

T5X T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of

Google Research 1.1k Jan 08, 2023
Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can ! 🤡

Customers Segmentation using PHP and Rubix ML PHP Library Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can !

Mickaël Andrieu 11 Oct 08, 2022
A Python package to create, run, and post-process MODFLOW-based models.

Version 3.3.5 — release candidate Introduction FloPy includes support for MODFLOW 6, MODFLOW-2005, MODFLOW-NWT, MODFLOW-USG, and MODFLOW-2000. Other s

388 Nov 29, 2022
Command-line tool for downloading and extending the RedCaps dataset.

RedCaps Downloader This repository provides the official command-line tool for downloading and extending the RedCaps dataset. Users can seamlessly dow

RedCaps dataset 33 Dec 14, 2022
The official github repository for Towards Continual Knowledge Learning of Language Models

Towards Continual Knowledge Learning of Language Models This is the official github repository for Towards Continual Knowledge Learning of Language Mo

Joel Jang | 장요엘 65 Jan 07, 2023