Crowd sourced training data for Rasa NLU models

Overview

Open in Streamlit

NLU Training Data

Crowd-sourced training data for the development and testing of Rasa NLU models.

If you're interested in grabbing some data feel free to check out our live data fetching ui.


About this repository

This is an experiment with the goal of providing basic training data for developing chatbots, therefore, this repository is open for contributions!

We need your help to create an open source dataset to empower chatbot makers and conversational AI enthusiasts alike, and we very much appreciate your support in expanding the collection of data available to the community.

How do I donate my training data?

Each folder should contain a list of multiple intents, consider if the set of training data you're contributing could fit within an existing folder before creating a new one.

To contribute via pull request, follow these steps:

  1. Create an issue describing the training data you would like to contribute.

  2. Create a new file with a folder title and a NLU.yml file, or contribute to an existing folder.

  3. In the NLU.yml file, format your training data using YAML, remove all entities (see script), title each section with the intent types and add a short description e.g.intent:inform_rain <!--The user says that it is currently raining somewhere.-->

  4. Update the README.md file, include a list of the intent types added.

  5. Create a pull request describing your changes.

Your pull request will be reviewed by a maintainer, who will get back to you about any necessary changes or questions. You will also be asked to sign a Contributor License Agreement.

FAQs

How should I label my intents?

Please always put the domain at the end of each intent. For example: ask_transport

What do I do about multi-intent utterences?

If you would like to contribute multi-intent utterences, please add a + to indicate an additional intent, for example: affirm+ask_transport

What about training data that’s not in English?

Currently, we are unable to evaluate the quality of all language contributions, and therefore, during the initial phase we can only accept English training data to the repository. However, we understand that the Rasa community is a global one, and in the long-term we would like to find a solution for this in collaboration with the community.

Why do I need to remove entities from my training data?

We would like to make the training data as easy as possible to adopt to new training models and annotating entities highly dependent on your bot’s purpose. Therefore, we will first focus on collecting training data that only includes intents.

To help you remove the annotated entities from your training data, you can run this script.


About Rasa

Owner
Rasa
Open source machine learning tools for developers to build, improve, and deploy text-and voice-based chatbots and assistants
Rasa
texlive expressions for documents

tex2nix Generate Texlive environment containing all dependencies for your document rather than downloading gigabytes of texlive packages. Installation

Jörg Thalheim 70 Dec 26, 2022
Module for automatic summarization of text documents and HTML pages.

Automatic text summarizer Simple library and command line utility for extracting summary from HTML pages or plain texts. The package also contains sim

Mišo Belica 3k Jan 08, 2023
Simple GUI where you can enter an article and get a crisp summarized version.

Text-Summarization-using-TextRank-BART Simple GUI where you can enter an article and get a crisp summarized version. How to run: Clone the repo Instal

Rohit P 4 Sep 28, 2022
Large-scale pretraining for dialogue

A State-of-the-Art Large-scale Pretrained Response Generation Model (DialoGPT) This repository contains the source code and trained model for a large-

Microsoft 1.8k Jan 07, 2023
edge-SR: Super-Resolution For The Masses

edge-SR: Super Resolution For The Masses Citation Pablo Navarrete Michelini, Yunhua Lu and Xingqun Jiang. "edge-SR: Super-Resolution For The Masses",

Pablo 40 Nov 10, 2022
Natural Language Processing Best Practices & Examples

NLP Best Practices In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive bus

Microsoft 6.1k Dec 31, 2022
🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.

State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 🤗 Transformers provides thousands of pretrained models to perform tasks o

Hugging Face 77.3k Jan 03, 2023
189 Jan 02, 2023
Applied Natural Language Processing in the Enterprise - An O'Reilly Media Publication

Applied Natural Language Processing in the Enterprise This is the companion repo for Applied Natural Language Processing in the Enterprise, an O'Reill

Applied Natural Language Processing in the Enterprise 95 Jan 05, 2023
Opal-lang - A WIP programming language based on Python

thanks to aphitorite for the beautiful logo! opal opal is a WIP transcompiled pr

3 Nov 04, 2022
Open solution to the Toxic Comment Classification Challenge

Starter code: Kaggle Toxic Comment Classification Challenge More competitions 🎇 Check collection of public projects 🎁 , where you can find multiple

minerva.ml 153 Jun 22, 2022
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022
I can help you convert your images to pdf file.

IMAGE TO PDF CONVERTER BOT Configs TOKEN - Get bot token from @BotFather API_ID - From my.telegram.org API_HASH - From my.telegram.org Deploy to Herok

MADUSHANKA 10 Dec 14, 2022
Extract rooms type, door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset

Housegan-data-reader House-GAN++ (data-reader) Code and instructions for converting rplan dataset (raster images) to housegan++ data format. House-GAN

Sepid Hosseini 13 Nov 24, 2022
End-to-end image captioning with EfficientNet-b3 + LSTM with Attention

Image captioning End-to-end image captioning with EfficientNet-b3 + LSTM with Attention Model is seq2seq model. In the encoder pretrained EfficientNet

2 Feb 10, 2022
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 169 Jan 05, 2023
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Text Classification in Turkish Texts with Bert

You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification

42 Dec 31, 2022
⚖️ A Statutory Article Retrieval Dataset in French.

A Statutory Article Retrieval Dataset in French This repository contains the Belgian Statutory Article Retrieval Dataset (BSARD), as well as the code

Maastricht Law & Tech Lab 19 Nov 17, 2022
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 Corpora 📃 Corpora Number of documents Size (GB) BNE 201,080,084 570GB Models 🤖 RoBERTa-base BNE: https://huggingface.co

PlanTL-SANIDAD 203 Dec 20, 2022