[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

Overview

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

paper | website

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

Bingqian Lu, Jianyi Yang, Weiwen Jiang, Yiyu Shi, Shaolei Ren, Proceedings of the ACM on Measurement and Analysis of Computing Systems, vol. 5, no. 3, Dec, 2021. (SIGMETRICS 2022)

@article{
  luOneProxy2021,
  title={One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search},
  author={Bingqian Lu and Jianyi Yang and Weiwen Jiang and Yiyu Shi and Shaolei Ren},
  journal = {Proceedings of the ACM on Measurement and Analysis of Computing Systems}, 
  month = Dec,
  year = 2021,
  volume = {5}, 
  number = {3},
  articleno = {34}, 
  numpages = {35},
}

In a Nutshell

Given N target devices, our OneProxy approach can keep the total neural architecture search cost at O(1).

Hardware-aware NAS Dilemma

CNNs are used in numerous real-world applications such as vision-based autonomous driving and video content analysis. To run CNN inference on various target devices, hardware-aware neural architecture search (NAS) is crucial. A key requirement of efficient hardware-aware NAS is the fast evaluation of inference latencies in order to rank different architectures. While building a latency predictor for each target device has been commonly used in state of the art, this is a very time-consuming process, lacking scalability in the presence of extremely diverse devices.

Overview of SOTA NAS algorithms

framework

Left: NAS without a supernet. Right: One-shot NAS with a supernet.

nas_cost_comparison

Cost Comparison of Hardware-aware NAS Algorithms for đť‘› Target Devices.

Our approach: exploiting latency monotonicity

We address the scalability challenge by exploiting latency monotonicity — the architecture latency rankings on different devices are often correlated. When strong latency monotonicity exists, we can re-use architectures searched for one proxy device on new target devices, without losing optimality.

Using SRCC to measure latency monotonicity

To quantify the degree of latency monotonicity, we use the metric of Spearman’s Rank Correlation Coefficient (SRCC), which lies between -1 and 1 and assesses statistical dependence between the rankings of two variables using a monotonic function.

heatmap

SRCC of 10k sampled models latencies in MobileNet-V2 space on different pairs of mobile and non-mobile devices.

In the absence of strong latency monotonicity: adapting the proxy latency predictor

AdaProxy for boosting latency monotonicity

We exploit the correlation among devices and propose efficient transfer learning to boost the otherwise possibly weak latency monotonicity for a target device.

In the MobileNet-V2 space, with S5e as default proxy device

nasbench_heatmap

In the NAS-Bench-201 search space on CIFAR-10 (left), CIFAR-100 (middle) and ImageNet16-120 (right) datasets, with Pixel3 as our proxy device

nasbench_heatmap

In the FBNet search spaces on CIFAR-100 (left) and ImageNet16-120 (right) datasets, with Pixel3 as our proxy device

SRCC for various devices in the NAS-Bench-201 search space with latencies collected from [19, 29, 49, 50]

Using one proxy device for hardware-aware NAS

flowchart

One proxy for hardware-aware NAS

ea_models

exhaustive_models

Results for non-mobile target devices with the default S5e proxy and AdaProxy. The top row shows the evolutionary search results with real measured accuracies, and the bottom row shows the exhaustive search results based on 10k random architectures (in the MobileNet-V2 space) and predicted accuracies.

rice_nasbench_cifar10

Exhaustive search results for different target devices on NAS-Bench-201 architectures (CIFAR-10 dataset). Pixel3 is the proxy.

Public latency datasets used in this work

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

Eagle: Efficient and Agile Performance Estimator and Dataset

nn-Meter: towards accurate latency prediction of deep-learning model inference on diverse edge devices

Once for All: Train One Network and Specialize it for Efficient Deployment

Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
Phy-Q: A Benchmark for Physical Reasoning

Phy-Q: A Benchmark for Physical Reasoning Cheng Xue*, Vimukthini Pinto*, Chathura Gamage* Ekaterina Nikonova, Peng Zhang, Jochen Renz School of Comput

29 Dec 19, 2022
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
Res2Net for Instance segmentation and Object detection using MaskRCNN

Res2Net for Instance segmentation and Object detection using MaskRCNN Since the MaskRCNN-benchmark of facebook is deprecated, we suggest to use our mm

Res2Net Applications 55 Oct 30, 2022
《Geo Word Clouds》paper implementation

《Geo Word Clouds》paper implementation

Russellwzr 2 Jan 28, 2022
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)

InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm

Fan-Yun Sun 232 Dec 28, 2022
Optimising chemical reactions using machine learning

Summit Summit is a set of tools for optimising chemical processes. We’ve started by targeting reactions. What is Summit? Currently, reaction optimisat

Sustainable Reaction Engineering Group 75 Dec 14, 2022
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.

Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima

Z80 15 Dec 26, 2022
The official implementation of CircleNet: Anchor-free Detection with Circle Representation, MICCAI 2030

CircleNet: Anchor-free Detection with Circle Representation The official implementation of CircleNet, MICCAI 2020 [PyTorch] [project page] [MICCAI pap

The Biomedical Data Representation and Learning Lab 45 Nov 18, 2022
Implementation of QuickDraw - an online game developed by Google, combined with AirGesture - a simple gesture recognition application

QuickDraw - AirGesture Introduction Here is my python source code for QuickDraw - an online game developed by google, combined with AirGesture - a sim

Viet Nguyen 89 Dec 18, 2022
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
Mixup for Supervision, Semi- and Self-Supervision Learning Toolbox and Benchmark

OpenSelfSup News Downstream tasks now support more methods(Mask RCNN-FPN, RetinaNet, Keypoints RCNN) and more datasets(Cityscapes). 'GaussianBlur' is

AI Lab, Westlake University 332 Jan 03, 2023
Code for the paper: Audio-Visual Scene Analysis with Self-Supervised Multisensory Features

[Paper] [Project page] This repository contains code for the paper: Andrew Owens, Alexei A. Efros. Audio-Visual Scene Analysis with Self-Supervised Mu

Andrew Owens 202 Dec 13, 2022
MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Documentation: https://mmgeneration.readthedocs.io/ Introduction English | 简体中文 MMGeneration is a powerful toolkit for generative models, especially f

OpenMMLab 1.3k Dec 29, 2022