An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Overview

Transformer-in-Transformer Twitter

PyPI Open In Colab Upload Python Package Lint Code Base Code style: black

GitHub License GitHub stars GitHub followers Twitter Follow

An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local patches. Transformer in Transformer uses pixel level attention paired with patch level attention for image classification, in TensorFlow.

PyTorch Implementation

Installation

Run the following to install:

pip install tnt-tensorflow

Developing tnt-tensorflow

To install tnt-tensorflow, along with tools you need to develop and test, run the following in your virtualenv:

git clone https://github.com/Rishit-dagli/Transformer-in-Transformer.git
# or clone your own fork

cd tnt
pip install -e .[dev]

Usage

import tensorflow as tf
from tnt import TNT

tnt = TNT(
    image_size=256,  # size of image
    patch_dim=512,  # dimension of patch token
    pixel_dim=24,  # dimension of pixel token
    patch_size=16,  # patch size
    pixel_size=4,  # pixel size
    depth=5,  # depth
    num_classes=1000,  # output number of classes
    attn_dropout=0.1,  # attention dropout
    ff_dropout=0.1,  # feedforward dropout
)

img = tf.random.uniform(shape=[5, 3, 256, 256])
logits = tnt(img) # (5, 1000)

Want to Contribute 🙋‍♂️ ?

Awesome! If you want to contribute to this project, you're always welcome! See Contributing Guidelines. You can also take a look at open issues for getting more information about current or upcoming tasks.

Want to discuss? 💬

Have any questions, doubts or want to present your opinions, views? You're always welcome. You can start discussions.

Citation

@misc{han2021transformer,
      title={Transformer in Transformer}, 
      author={Kai Han and An Xiao and Enhua Wu and Jianyuan Guo and Chunjing Xu and Yunhe Wang},
      year={2021},
      eprint={2103.00112},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

Copyright 2020 Rishit Dagli

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Comments
  • Add Unit Tests

    Add Unit Tests

    The tests should check for the rank and shape of the output tensors, the test should override tf.test.TestCase base class.

    • [x] #15
    • [x] #16
    • [x] #18
    • [x] #17

    Feel free to take inspiration from:

    • https://github.com/Rishit-dagli/Fast-Transformer/blob/main/fast_transformer/test_fast_transformer.py
    • For parametrization feel free to follow https://stackoverflow.com/a/34094/11878567, can be used in the exact same way with subTest in TensorFlow
    enhancement good first issue 
    opened by Rishit-dagli 3
  • Update Workflows to run tests

    Update Workflows to run tests

    This issue follows #11

    Update GitHub Workflows to:

    • [ ] Run Tests before uploading to PyPI
    • [ ] Create a workflow to run tests on commits

    Feel free to take inspiration from https://github.com/Rishit-dagli/Fast-Transformer/tree/main/.github/workflows

    enhancement good first issue 
    opened by Rishit-dagli 0
  • Creates an Attention layer

    Creates an Attention layer

    Verify output shapes just from the attention layer:

    import tensorflow as tf
    Attention(dim=256)(tf.random.normal([3,256,256]))
    
    # <tf.Tensor: shape=(3, 256, 256), dtype=float32,
    

    Closes #3

    opened by Rishit-dagli 0
  • Put together a TNT class

    Put together a TNT class

    Verify shapes:

    tnt = TNT(
        image_size=256,  # size of image
        patch_dim=512,  # dimension of patch token
        pixel_dim=24,  # dimension of pixel token
        patch_size=16,  # patch size
        pixel_size=4,  # pixel size
        depth=5,  # depth
        num_classes=1000,  # output number of classes
        attn_dropout=0.1,  # attention dropout
        ff_dropout=0.1,  # feedforward dropout
    )
    
    img = tf.random.uniform(shape=[1, 3, 256, 256])
    print(tnt(img).shape)
    
    # (1, 1000)
    ```
    opened by Rishit-dagli 0
  • Create an Attention layerr

    Create an Attention layerr

    Verify output shapes just from the attention layer:

    import tensorflow as tf
    Attention(dim=256)(tf.random.normal([3,256,256]))
    
    # <tf.Tensor: shape=(3, 256, 256), dtype=float32,
    
    opened by Rishit-dagli 0
  • Create a PreNorm layer

    Create a PreNorm layer

    Verify output shapes from this layer:

    import tensorflow as tf
    PreNorm(dim=1, fn=tf.keras.layers.Dense(5))(tf.random.normal([10, 1]))
    
    # <tf.Tensor: shape=(10, 1), dtype=float32,
    
    opened by Rishit-dagli 0
Releases(v0.2.0)
  • v0.2.0(Feb 2, 2022)

    This is an interesting release for the project, including a pre-trained model on ImageNet, reproducibility of paper results, tests, and end-to-end training.

    ✅ Bug Fixes / Improvements

    • Create an end-to-end training example demonstrating how to train a TNT model for image classification through a custom training loop on the TF Flowers dataset (#14)
    • Pre-trained model to reproduce the paper results have been made available (in this release as well as on TensorFlow Hub)
    • Create an off-the-shelf inference example, that highlights how you can directly use the pre-trained model made available
    • Unit Tests for the Attention class (#19)
    • Unit Tests for the main TNT class (#20)

    Full Changelog: https://github.com/Rishit-dagli/Transformer-in-Transformer/compare/v0.1.0...v0.2.0

    Source code(tar.gz)
    Source code(zip)
    tnt_s_patch16_224.tar.gz(84.42 MB)
  • v0.1.0(Dec 3, 2021)

    This is the initial release of TNT TensorFlow and implements Transformers in Transformers as a subclassed TensorFlow model.

    Classes

    • Attention: Implements attention as a TensorFlow Keras Layer making some modifications.
    • PreNorm: Normalize the activations of the previous layer for each given example in a batch independently and apply some function to it, implemented as a TensorFlow Keras Layer.
    • FeedForward: Create a FeedForward neural net with two Dense layers and GELU activation, implemented as a TensorFlow Keras Layer.
    • TNT: Implements the Transformers in Transformers model using all the other classes, and converts to logits. Implemented as a TensorFlow Keras Model.
    Source code(tar.gz)
    Source code(zip)
    tnt_s_patch16_224.tar.gz(84.42 MB)
Owner
Rishit Dagli
High School,TEDx,2xTED-Ed speaker | International Speaker | Microsoft Student Ambassador | Mentor, @TFUGMumbai | Organize @KotlinMumbai
Rishit Dagli
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks

Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks Contributions A novel pairwise feature LSP to extract structural

31 Dec 06, 2022
Pose estimation with MoveNet Lightning

Pose Estimation With MoveNet Lightning MoveNet is the TensorFlow pre-trained model that identifies 17 different key points of the human body. It is th

Yash Vora 2 Jan 04, 2022
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

Clova AI Research 256 Jan 05, 2023
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
A PyTorch implementation of a Factorization Machine module in cython.

fmpytorch A library for factorization machines in pytorch. A factorization machine is like a linear model, except multiplicative interaction terms bet

Jack Hessel 167 Jul 06, 2022
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

IvLabs 112 Dec 02, 2022
bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED)

osed-scripts bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED) Table of Contents Standalone Scripts egghunter.py fin

epi 268 Jan 05, 2023
3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021)

3DDUNET This is the code for 3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021) Conference Paper Link Dataset We use SMOID dataset

1 Jan 07, 2022
AntiFuzz: Impeding Fuzzing Audits of Binary Executables

AntiFuzz: Impeding Fuzzing Audits of Binary Executables Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf Usage: The python scri

Chair for Sys­tems Se­cu­ri­ty 88 Dec 21, 2022
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Jan 03, 2023
基于Paddle框架的fcanet复现

fcanet-Paddle 基于Paddle框架的fcanet复现 fcanet 本项目基于paddlepaddle框架复现fcanet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: frazerlin-fcanet 数据准备 本项目已挂

QuanHao Guo 7 Mar 07, 2022
Simple tools for logging and visualizing, loading and training

TNT TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is desi

1.5k Jan 02, 2023
UMich 500-Level Mobile Robotics Course

MOBILE ROBOTICS: METHODS & ALGORITHMS - WINTER 2022 University of Michigan - NA 568/EECS 568/ROB 530 For slides, lecture notes, and example codes, see

393 Dec 29, 2022
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023
Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
Simulation-based performance analysis of server-less Blockchain-enabled Federated Learning

Blockchain-enabled Server-less Federated Learning Repository containing the files used to reproduce the results of the publication "Blockchain-enabled

Francesc Wilhelmi 9 Sep 27, 2022
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022