[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

Overview

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification

In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreases the costs in both the training and deployment stages of person ReID. We develop an automatic data synthesis toolkit and use synthesized data in mutiple ReID tasks, including (i) Direct transfer, (ii) Unsupervised domain adaptation, and (iii) Supervised fine-tuning.

The repo contains the synthesized data we use in the paper and presents examples of how to use synthesized data in various down-stream tasks to boost the ReID performance.

The codes are based on CBN (ECCV 2020) and JVTC (ECCV 2020).

Highlights:

  1. In direct transfer evaluation, we achieve 38.5% rank-1 accuracy on MSMT17 and 79.0% on Market-1501 using our unreal data.
  2. In unsupervised domain adaptation, we achieve 68.2% rank-1 accuracy on MSMT17 and 93.0% on Market-1501 using our unreal data.
  3. We obtain a better pre-trained ReID model with our unreal data.

Demonstration

Data Details

Our synthesized data (named Unreal in the paper) is generated with Makehuman, Mixamo, and UnrealEngine 4. We provide 1.2M images of 6.8K identities, captured from 4 unreal environments.

Beihang Netdisk: Download Link valid until: 2024-01-01

BaiduPan: Download Link password: abcd

The image path is formulated as: unreal_v{X}.{Y}/images/{P}_c{D}_{F}.jpg, for example, unreal_v3.1/images/333_c001_78.jpg.

X represents the ID of unreal environment; Y is the version of human models; P is the person identity label; D is the camera label; F is the frame number.

We provide three types of human models: version 1 is the basic type; version 2 contains accessories, like handbags, hats and backpacks; version 3 contains hard samples with similar global appearance. Four virtual environments are used in our synthesized data: the first three are city environments and the last one is a supermarket. Note that cameras under different virtual environments may have the same label and persons of different versions may also have the same identity label. Therefore, images with the same (Y, P) belong to the same virtual person; images with the same (X, D) belong to the same camera.

The data synthesis toolkit, including Makehuman plugin, several UE4 blueprints and data annotation scripts, will be published soon.

UnrealPerson Pipeline

Direct Transfer and Supervised Fine-tuning

We use Camera-based Batch Normalization baseline for direct transfer and supervised fine-tuning experiments.

1. Clone this repo and change directory to CBN

git clone https://github.com/FlyHighest/UnrealPerson.git
cd UnrealPerson/CBN

2. Download Market-1501, DukeMTMC-reID, MSMT17, UnrealPerson data and organize them as follows:

.
+-- data
|   +-- market
|       +-- bounding_box_train
|       +-- query
|       +-- bounding_box_test
|   +-- duke
|       +-- bounding_box_train
|       +-- query
|       +-- bounding_box_test
|   +-- msmt17
|       +-- train
|       +-- test
|       +-- list_train.txt
|       +-- list_val.txt
|       +-- list_query.txt
|       +-- list_gallery.txt
|   +-- unreal_vX.Y
|       +-- images
+ -- other files in this repo

3. Install the required packages

pip install -r requirements.txt

4. Put the official PyTorch ResNet-50 pretrained model to your home folder: '~/.torch/models/'

5. Train a ReID model with our synthesized data

Reproduce the results in our paper:

CUDA_DEVICE_ORDER=PCI_BUS_ID CUDA_VISIBLE_DEVICES=0,1 \
python train_model.py train --trainset_name unreal --datasets='unreal_v1.1,unreal_v2.1,unreal_v3.1,unreal_v4.1,unreal_v1.2,unreal_v2.2,unreal_v3.2,unreal_v4.2,unreal_v1.3,unreal_v2.3,unreal_v3.3,unreal_v4.3' --save_dir='unreal_4678_v1v2v3_cambal_3000' --save_step 15  --num_pids 3000 --cam_bal True --img_per_person 40

We also provide the trained weights of this experiment in the data download links above.

Configs: When trainset_name is unreal, datasets contains the directories of unreal data that will be used. num_pids is the number of humans and cam_bal denotes the camera balanced sampling strategy is adopted. img_per_person controls the size of the training set.

More configurations are in config.py.

6.1 Direct transfer to real datasets

CUDA_DEVICE_ORDER=PCI_BUS_ID CUDA_VISIBLE_DEVICES=0 \
python test_model.py test --testset_name market --save_dir='unreal_4678_v1v2v3_cambal_3000'

6.2 Fine-tuning

CUDA_DEVICE_ORDER=PCI_BUS_ID CUDA_VISIBLE_DEVICES=1,0 \
python train_model.py train --trainset_name market --save_dir='market_unrealpretrain_demo' --max_epoch 60 --decay_epoch 40 --model_path pytorch-ckpt/current/unreal_4678_v1v2v3_cambal_3000/model_best.pth.tar


CUDA_DEVICE_ORDER=PCI_BUS_ID CUDA_VISIBLE_DEVICES=0 \
python test_model.py test --testset_name market --save_dir='market_unrealpretrain_demo'

Unsupervised Domain Adaptation

We use joint visual and temporal consistency (JVTC) framework. CBN is also implemented in JVTC.

1. Clone this repo and change directory to JVTC

git clone https://github.com/FlyHighest/UnrealPerson.git
cd UnrealPerson/JVTC

2. Prepare data

Basicly, it is the same as CBN, except for an extra directory bounding_box_train_camstyle_merge, which can be downloaded from ECN. We suggest using ln -s to save disk space.

.
+-- data
|   +-- market
|       +-- bounding_box_train
|       +-- query
|       +-- bounding_box_test
|       +-- bounding_box_train_camstyle_merge
+ -- other files in this repo

3. Install the required packages

pip install -r ../CBN/requirements.txt

4. Put the official PyTorch ResNet-50 pretrained model to your home folder: '~/.torch/models/'

5. Train and test

(Unreal to MSMT)

python train_cbn.py --gpu_ids 0,1,2 --src unreal --tar msmt --num_cam 6 --name unreal2msmt --max_ep 60

python test_cbn.py --gpu_ids 1 --weights snapshot/unreal2msmt/resnet50_unreal2market_epoch60_cbn.pth --name 'unreal2msmt' --tar market --num_cam 6 --joint True 

The unreal data used in JVTC is defined in list_unreal/list_unreal_train.txt. The CBN codes support generating this file (see CBN/io_stream/datasets/unreal.py).

More details can be seen in JVTC.

References

  • [1] Rethinking the Distribution Gap of Person Re-identification with Camera-Based Batch Normalization. ECCV 2020.

  • [2] Joint Visual and Temporal Consistency for Unsupervised Domain Adaptive Person Re-Identification. ECCV 2020.

Cite our paper

If you find our work useful in your research, please kindly cite:

@misc{zhang2020unrealperson,
      title={UnrealPerson: An Adaptive Pipeline towards Costless Person Re-identification}, 
      author={Tianyu Zhang and Lingxi Xie and Longhui Wei and Zijie Zhuang and Yongfei Zhang and Bo Li and Qi Tian},
      year={2020},
      eprint={2012.04268},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

If you have any questions about the data or paper, please leave an issue or contact me: [email protected]

Owner
ZhangTianyu
ZhangTianyu
PyTorch implementation of Pointnet2/Pointnet++

Pointnet2/Pointnet++ PyTorch Project Status: Unmaintained. Due to finite time, I have no plans to update this code and I will not be responding to iss

Erik Wijmans 1.2k Dec 29, 2022
PyTorch implementation of "A Two-Stage End-to-End System for Speech-in-Noise Hearing Aid Processing"

Implementation of the Sheffield entry for the first Clarity enhancement challenge (CEC1) This repository contains the PyTorch implementation of "A Two

10 Aug 19, 2022
Code, Models and Datasets for OpenViDial Dataset

OpenViDial This repo contains downloading instructions for the OpenViDial dataset in 《OpenViDial: A Large-Scale, Open-Domain Dialogue Dataset with Vis

119 Dec 08, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
LIVECell - A large-scale dataset for label-free live cell segmentation

LIVECell dataset This document contains instructions of how to access the data associated with the submitted manuscript "LIVECell - A large-scale data

Sartorius Corporate Research 112 Jan 07, 2023
Official Implementation for "ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement" https://arxiv.org/abs/2104.02699

ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement Recently, the power of unconditional image synthesis has significantly advanced th

967 Jan 04, 2023
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images

Keras-ICNet [paper] Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. Training in progress! Requisites Python 3.6.3 K

Aitor Ruano 87 Dec 16, 2022
Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment

Voronoi Multi_Robot Collaborate Exploration Introduction In the unknown environment, the cooperative exploration of multiple robots is completed by Vo

PeaceWord 6 Nov 22, 2022
Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos This repository is the official tensorflow python implementation

Yasamin Jafarian 287 Jan 06, 2023
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021
Implementation of "With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition, BMVC, 2021" in PyTorch

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library

BaratiLab 11 Dec 27, 2022
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022