A python script and steps to display locations of peers connected to qbittorrent

Overview

alt text

A python script (along with instructions) to display the locations of all the peers your qBittorrent client is connected to in a Grafana worldmap dashboard.

Disclaimer : The steps I took to get this working might not be the most efficient. But this is all I could create with what I know at the moment. Feel free to (actually this is a request) to make changes and improve this. Thanks!

Pre-requisites

  • python

    • pygeohash module (to convert latitude and longitude to geohash)
    • mariadb module (a quick google search for 'python mariadb' should tell you all you need to know about using this module)
  • MariaDB (this should work with other similar databases but I haven't tried any of them yet)

  • qBittorrent

  • Grafana

Steps

  • First step is to create the database which will contain the information about the IP addresses and their corresponding locations. I used this "https://lite.ip2location.com/database/db5-ip-country-region-city-latitude-longitude" since it is free and it had the latitude and longitude information which is enough precision to pipoint a peer on the map. Download the IPV4 CSV file from this link and follow the instructions given below in the same page to create a database and import the location data to a table.

alt text

alt text

  • Next, create a new table which I'll call peer_list to store the IP addresses along with their geohashes of all the peers which are connected at a given point in time. To create this table, which is in the same database as the ip2location table, I used:

CREATE TABLE peer_list (time int(11), ip_address varchar(15), geohash varchar(20));

Remember to grant the neccessary permissions on both the tables to your MariaDB user.

  • Now download the python script in this repository and fill in your credentials.
    • qBittorrent web API credentials
    • MariaDB credentials

Once you're done with this step, run the script once. If all goes well, you should be able to see the peer_list table populated with IP addresses and geohashes.

If you haven't already done so, install the Grafana world map plugin. You can find it here "https://grafana.com/grafana/plugins/grafana-worldmap-panel/".

alt text

alt text

alt text

  • Once that's done, create a new panel in Grafana and change visualization option to worldmap panel. Change the database source to your MariaDB database. Choose the table name as peer_list, and the metric column as geohash. In the next row, change the Column:value to Column:geohash by right clicking it and typing in geohash. Then, at the end of the query options, change the format as option to table. Then we'll change the worldmap panel options in the right side. Change the values for min and max circle size to 1 since we're displaying each peer as a single dot and not as a bigger circle. Change location data to geohash. Finally, under field mapping, enter geohash in the geo_point/geohash field box.

And, if everything went correctly (or exactly like I did lol), you should start seeing a few dots appear on the map. You can change the color of the dots by changing the color for the thresholds in previous step.

  • Now, all that's left is to add a cron entry to execute the script at regular intervals and we're done. :)
Schema validation just got Pythonic

Schema validation just got Pythonic schema is a library for validating Python data structures, such as those obtained from config-files, forms, extern

Vladimir Keleshev 2.7k Jan 06, 2023
A high-level plotting API for pandas, dask, xarray, and networkx built on HoloViews

hvPlot A high-level plotting API for the PyData ecosystem built on HoloViews. Build Status Coverage Latest dev release Latest release Docs What is it?

HoloViz 694 Jan 04, 2023
China and India Population and GDP Visualization

China and India Population and GDP Visualization Historical Population Comparison between India and China This graph shows the population data of Indi

Nicolas De Mello 10 Oct 27, 2021
A Python-based non-fungible token (NFT) generator built using Samilla and Matplotlib

PyNFT A Pythonic NF (non-fungible token) generator built using Samilla and Matplotlib Use python pynft.py [amount] The intention behind this generato

Ayush Gundawar 6 Feb 07, 2022
This project is created to visualize the system statistics such as memory usage, CPU usage, memory accessible by process and much more using Kibana Dashboard with Elasticsearch.

System Stats Visualizer This project is created to visualize the system statistics such as memory usage, CPU usage, memory accessible by process and m

Vishal Teotia 5 Feb 06, 2022
Easily convert matplotlib plots from Python into interactive Leaflet web maps.

mplleaflet mplleaflet is a Python library that converts a matplotlib plot into a webpage containing a pannable, zoomable Leaflet map. It can also embe

Jacob Wasserman 502 Dec 28, 2022
plotly scatterplots which show molecule images on hover!

molplotly Plotly scatterplots which show molecule images on hovering over the datapoints! Required packages: pandas rdkit jupyter_dash ➡️ See example.

150 Dec 28, 2022
PanGraphViewer -- show panenome graph in an easy way

PanGraphViewer -- show panenome graph in an easy way Table of Contents Versions and dependences Desktop-based panGraphViewer Library installation for

16 Dec 17, 2022
又一个云探针

ServerStatus-Murasame 感谢ServerStatus-Hotaru,又一个云探针诞生了(大雾 本项目在ServerStatus-Hotaru的基础上使用fastapi重构了服务端,部分修改了客户端与前端 项目还在非常原始的阶段,可能存在严重的问题 演示站:https://stat

6 Oct 19, 2021
股票行情实时数据接口-A股,完全免费的沪深证券股票数据-中国股市,python最简封装的API接口

股票行情实时数据接口-A股,完全免费的沪深证券股票数据-中国股市,python最简封装的API接口,包含日线,历史K线,分时线,分钟线,全部实时采集,系统包括新浪腾讯双数据核心采集获取,自动故障切换,STOCK数据格式成DataFrame格式,可用来查询研究量化分析,股票程序自动化交易系统.为量化研究者在数据获取方面极大地减轻工作量,更加专注于策略和模型的研究与实现。

dev 572 Jan 08, 2023
Data visualization electromagnetic spectrum

Datenvisualisierung-Elektromagnetischen-Spektrum Anhand des Moduls matplotlib sollen die Daten des elektromagnetischen Spektrums dargestellt werden. D

Pulsar 1 Sep 01, 2022
ecoglib: visualization and statistics for high density microecog signals

ecoglib: visualization and statistics for high density microecog signals This library contains high-level analysis tools for "topos" and "chronos" asp

1 Nov 17, 2021
Functions for easily making publication-quality figures with matplotlib.

Data-viz utils 📈 Functions for data visualization in matplotlib 📚 API Can be installed using pip install dvu and then imported with import dvu. You

Chandan Singh 16 Sep 15, 2022
A curated list of awesome Dash (plotly) resources

Awesome Dash A curated list of awesome Dash (plotly) resources Dash is a productive Python framework for building web applications. Written on top of

Luke Singham 1.7k Dec 26, 2022
A customized interface for single cell track visualisation based on pcnaDeep and napari.

pcnaDeep-napari A customized interface for single cell track visualisation based on pcnaDeep and napari. 👀 Under construction You can get test image

ChanLab 2 Nov 07, 2021
A shimmer pre-load component for Plotly Dash

dash-loading-shimmer A shimmer pre-load component for Plotly Dash Installation Get it with pip: pip install dash-loading-extras Or maybe you prefer Pi

Lucas Durand 4 Oct 12, 2022
Apache Superset is a Data Visualization and Data Exploration Platform

Superset A modern, enterprise-ready business intelligence web application. Why Superset? | Supported Databases | Installation and Configuration | Rele

The Apache Software Foundation 50k Jan 06, 2023
Simple and fast histogramming in Python accelerated with OpenMP.

pygram11 Simple and fast histogramming in Python accelerated with OpenMP with help from pybind11. pygram11 provides functions for very fast histogram

Doug Davis 28 Dec 14, 2022
Data visualization using matplotlib

Data visualization using matplotlib project instructions Top 5 Most Common Coffee Origins In this visualization I used data from Ankur Chavda on Kaggl

13 Oct 27, 2021
Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:

JoyPy JoyPy is a one-function Python package based on matplotlib + pandas with a single purpose: drawing joyplots (a.k.a. ridgeline plots). The code f

Leonardo Taccari 462 Jan 02, 2023