QED-C: The Quantum Economic Development Consortium provides these computer programs and software for use in the fields of quantum science and engineering.

Overview

Application-Oriented Performance Benchmarks for Quantum Computing

This repository contains a collection of prototypical application- or algorithm-centric benchmark programs designed for the purpose of characterizing the end-user perception of the performance of current-generation Quantum Computers.

The repository is maintained by members of the Quantum Economic Development Consortium (QED-C) Technical Advisory Committee on Standards and Performance Metrics (Standards TAC).

Important Note -- The examples maintained in this repository are not intended to be viewed as "performance standards". Rather, they are offered as simple "prototypes", designed to make it as easy as possible for users to execute simple "reference applications" across multiple quantum computing APIs and platforms. The application / algorithmic examples are structured using a uniform pattern for defining circuits, executing across different platforms, collecting results, and measuring the performance and fidelity in useful ways.

A wide variety of "reference applications" are provided. At the current stage in the evolution of quantum computing hardware, some applications will perform better on one hardware target, while a completely different set may execute better on another target. They are designed to provide for users a quantum "jump start", so to speak, eliminating the need to develop for themselves uniform code patterns that facilitate quick development, deployment and experimentation.

See the Implementation Status section below for the latest report on benchmarks implemented to date.

Notes on Repository Organization

The repository is organized at the highest level by specific reference application names. There is a directory for each application or algorithmic example, e.g. quantum-fourier-transform, which contains the the bulk of code for that application.

Within each application directory, there is a second level directory, one for each of the target programming environments that are supported. The repository is organized in this way to emphasize the application first and the target environment second, to encourage full support across platforms.

The directory names and the currently supported environments are:

    qiskit      -- IBM Qiskit
    cirq        -- Google Cirq
    braket      -- Amazon Braket

The goal has been to make the implementation of each algorithm identical across the different target environments, with processing and reporting of results as similar as possible. Each application directory includes a README file with information specific to that application or algorithm. Below we list the benchmarks we have implemented with a suggested order of approach; the benchmarks in levels 1 and 2 are more simple and a good place to start for beginners, while levels 3 and 4 are more complicated and might build off of intuition and reasoning developed in earlier algorithms.

Complexity of Benchmark Algorithms (Increasing Difficulty)

    1: Deutsch-Jozsa, Bernstein-Vazirani, Hidden Shift
    2: Quantum Fourier Transform, Grover's Search
    3: Phase Estimation, Amplitude Estimation
    4: Monte Carlo, Hamiltonian Simulation, Variational Quantum Eigensolver, Shor's Order Finding

In addition to the application directories at the highest level, there several other directories or files with specific purpose:

    _common                      -- collection of shared routines, used by all the application examples
    _doc                         -- detailed DESIGN_NOTES, and other reference materials
    _containerbuildfiles         -- build files and instructions for creating Docker images (optional)
    _setup                       -- information on setting up all environments
    
    benchmarks-*.ipynb.template  -- Jupyter Notebook templates

Setup and Configuration

The prototype benchmark applications are easy to run and contain few dependencies. The primary dependency is on the Python packages needed for the target environment in which you would like to execute the examples.

In the _setup folder you will find a subdirectory for each of the target environments that contains a README with everything you need to know to install and configure the specific environment in which you would like to run.

Important Note:

The suite of application benchmarks is configured by default to run on the simulators
that are typically included with the quantum programming environments.
Certain program parameters, such as maximum numbers of qubits, number of circuits
to execute for each qubit width and the number of shots, are defaulted to values that 
can run on the simulators easily.

However, when running on hardware, it is important to reduce these values to account 
for the capabilities of the machine on which you are executing. This is especially 
important for systems on which one could incur high billing costs if running large circuits.
See the above link to the _setup folder for more information about each programming environment.

Executing the Application Benchmark Programs from a Shell Window

The benchmark programs may be run manually in a command shell. In a command window or shell, change directory to the application you would like to execute. Then, simply execute a line similar to the following, to begin execution of the main program for the application:

    cd bernstein-vazirani/qiskit
    python bv_benchmark.py

This will run the program, construct and execute multiple circuits, analyze results and produce a set of bar charts to report on the results. The program executes random circuits constructed for a specific number of qubits, in a loop that ranges from min_qubits to max_qubits (with default values that can be passed as parameters). The number of random circuits generated for each qubit size can be controlled by the max_circuits parameter.

As each benchmark program is executed, you should see output that looks like the following, showing the average circuit creation and execution time along with a measure of the quality of the result, for each circuit width executed by the benchmark program:

Sample Output

Executing the Application Benchmark Programs in a Jupyter Notebook

Alternatively you may use the Jupyter Notebook templates that are provided in this repository. Simply copy and remove the .template extension from the copied ipynb template file. There is one template file provided for each of the API environments supported.

In the top level of this repo, start your jupyter-notebook process. When the browser listing appears, select the desired notebook .ipynb file to launch the notebook. There you will have access to a cell for each of the benchmarks in the repository, and may "Run" any one of them independently and see the results presented there.

Container Deployment of the Application Benchmark Programs

Applications are often deployed into Container Management Frameworks such as Docker, Kubernetes, and the like.

The Prototype Benchmarks repository includes support for the creation of a unique 'container image' for each of the supported API environments. You can find the instructions and all the necessary build files in a folder at the top level named _containerbuildfiles. The benchmark program image can be deployed into a container management framework and executed as any other application in that framework.

Once built, deployed and launched, the container process invokes a Jupyter Notebook from which you can run all the available benchmarks.

Interpreting Metrics

  • Creation Time: time spent on classical machine creating the circuit and transpiling.
  • Execution Time: time spent on quantum simulator or hardware backend running the circuit. This only includes the time when the algorirhm is being run and does not inlcude any of the time waiting in a queue on qiskit and cirq. Braket does not currently repor execution time, and therefore does include the queue time as well.
  • Fidelity: a measure of how well the simulator or hardware runs a particular benchmark, on a scale from 0 to 1, with 0 being a completely useless result and 1 being perfect execution of the algorithm. The math of how we calculate the fidelity is outlined in the file _doc/POLARIZATION_FIDELITY.md.
  • Circuit/Transpiled Depth: number of layers of gates to apply a particular algorithm. The Circuit depth is the depth if all of the gates used for the algorithm were native, while the transpile depth is the amount of gates if only certain gates are allowed. We default to ['rx', 'ry', 'rz', 'cx']. Note: this set of gates is just used to provide a normalized transpiled depth across all hardware and simulator platforms, and we seperately transpile to the native gate set of the hardware. The depth can be used to help provide reasoning for why one algorithm is harder to run than another for the same circuit width. This metric is currently only available on the Qiskit implementation of the algorithms.

Implementation Status

Below is a table showing the degree to which the benchmarks have been implemented in each of the target platforms (as of the last update to this branch):

Prototype Benchmarks - Implementation Status

Owner
SRI International
SRI International
An organized collection of tutorials and projects created for aspriring computer vision students.

A repository created with the purpose of teaching students in BME lab 308A- Hanoi University of Science and Technology

Givralnguyen 5 Nov 24, 2021
Genalog is an open source, cross-platform python package allowing generation of synthetic document images with custom degradations and text alignment capabilities.

Genalog is an open source, cross-platform python package allowing generation of synthetic document images with custom degradations and text alignment capabilities.

Microsoft 235 Dec 22, 2022
Virtual Zoom Gesture using OpenCV

Virtual_Zoom_Gesture I have created a virtual zoom gesture where we can Zoom in and Zoom out any image and even we can move that image anywhere on the

Mudit Sinha 2 Dec 26, 2021
pyntcloud is a Python library for working with 3D point clouds.

pyntcloud is a Python library for working with 3D point clouds.

David de la Iglesia Castro 1.2k Jan 07, 2023
The first open-source library that detects the font of a text in a image.

Typefont Typefont is an experimental library that detects the font of a text in a image. Usage Import the main function and invoke it like in the foll

Vasile Peศ™te 1.6k Feb 24, 2022
Thresholding-and-masking-using-OpenCV - Image Thresholding is used for image segmentation

Image Thresholding is used for image segmentation. From a grayscale image, thresholding can be used to create binary images. In thresholding we pick a threshold T.

Grace Ugochi Nneji 3 Feb 15, 2022
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
This is an API written in python that uses FastAPI. It is a simple API that can detect discord tokens in Images.

Welcome This is an API written in python that uses FastAPI. It is a simple API that can detect discord tokens in Images. Installation There are curren

8 Jul 29, 2022
Links to awesome OCR projects

Awesome OCR This list contains links to great software tools and libraries and literature related to Optical Character Recognition (OCR). Contribution

Konstantin Baierer 2.2k Jan 02, 2023
SceneCollisionNet This repo contains the code for "Object Rearrangement Using Learned Implicit Collision Functions", an ICRA 2021 paper. For more info

SceneCollisionNet This repo contains the code for "Object Rearrangement Using Learned Implicit Collision Functions", an ICRA 2021 paper. For more info

NVIDIA Research Projects 31 Nov 22, 2022
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
This repository contains codes on how to handle mouse event using OpenCV

Handling-Mouse-Click-Events-Using-OpenCV This repository contains codes on how t

Happy N. Monday 3 Feb 15, 2022
Handwritten_Text_Recognition

Deep Learning framework for Line-level Handwritten Text Recognition Short presentation of our project Introduction Installation 2.a Install conda envi

24 Jul 15, 2022
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

68 Dec 14, 2022
Lightning Fast Language Prediction ๐Ÿš€

whatthelang Lightning Fast Language Prediction ๐Ÿš€ Dependencies The dependencies can be installed using the requirements.txt file: $ pip install -r req

Indix 152 Oct 16, 2022
A real-time dolly zoom camera effect

Dolly-Zoom I've always been amazed by the gradual perspective change of dolly zoom, and I have some experience in python and OpenCV, so I decided to c

Dylan Kai Lau 52 Dec 08, 2022
A Python wrapper for the tesseract-ocr API

tesserocr A simple, Pillow-friendly, wrapper around the tesseract-ocr API for Optical Character Recognition (OCR). tesserocr integrates directly with

Fayez 1.7k Dec 31, 2022
Fun program to overlay a mask to yourself using a webcam

Superhero Mask Overlay Description Simple project made for fun. It consists of placing a mask (a PNG image with transparent background) on your face.

KB Kwan 10 Dec 01, 2022
nofacedb/faceprocessor is a face recognition engine for NoFaceDB program complex.

faceprocessor nofacedb/faceprocessor is a face recognition engine for NoFaceDB program complex. Tech faceprocessor uses a number of open source projec

NoFaceDB 3 Sep 06, 2021
POT : Python Optimal Transport

This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning.

Python Optimal Transport 1.7k Jan 04, 2023