The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it inside a loop of Design, Model Development and Operations.

Overview

GitHub Contributors Image

MLOps

The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it inside a loop of Design, Model Development and Operations.

In this paradigm, teams can easily collaborate in models, with clear tracking of the data throughout the process of cleaning, processing, and feature creation. Automating every repetitive process avoids human error and reduces the delivery time, ensuring the team keeps focusing on the Business Problem.

Some benefits:

  • Versioning data and code, making models to be auditable and reproducible.

  • Automated tests and building ensuring quality functioning of artifacts and availability for the delivery pipelines.

  • Makes it easier and faster the deployment of new models by using an automated cycle.

The MLOps Project

The MLOps project is a path to learning how to implement a study case aiming to be testable and reproducible within the CI/CD methodology, using the best programming practices.

The scope of this project is delimited as you can see in the image below.

We will select the best tool to implement every step, integrate them, and build a Machine Learning Orchestrator. That said, in the end, new ML experiments will be easily made, and delivered as simples as typing a terminal command or clicking on a button!


Prerequisites

For mlops_project to work correctly, first, you should install the prerequisites

Contributing

Have an idea of how to improve this project but don't know how to start, try to contribute

You can understand the project organization here

How to use?

If you are interested just in using this package, follow the steps below.

  1. Clone the repository

    Open a terminal (if you are using Windows, make sure of using the git bash) navigate to the desired destination folder and clone the repository,

    git clone https://github.com/Schots/mlops_project.git

    The Makefile on the root folder defines a set of functions needed to automate repetitive processes in this project. Type "make" in the terminal and see the available functions.


  1. Create an environment & Install requirements

    Create a Python virtual environment for the MLOps project on your local machine. Use any tool you desire. Activate the environment and install the requirements using make:

    make requirements
  2. Download data

    To download the raw dataset, use the get_data

    make get_data

    type the dataset name when prompted. The zip file with data will be downloaded and unzipped under the data/raw folder


Project based on the cookiecutter data science project template. #cookiecutterdatascience

Owner
Maykon Schots
Maykon Schots
Breast-Cancer-Classification - Using SKLearn breast cancer dataset which contains 569 examples and 32 features classifying has been made with 6 different algorithms

Breast-Cancer-Classification - Using SKLearn breast cancer dataset which contains 569 examples and 32 features classifying has been made with 6 different algorithms

Mert Sezer Ardal 1 Jan 31, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Drug prediction

I have collected data about a set of patients, all of whom suffered from the same illness. During their course of treatment, each patient responded to one of 5 medications, Drug A, Drug B, Drug c, Dr

Khazar 1 Jan 28, 2022
Made in collaboration with Chris George for Art + ML Spring 2019.

Deepdream Eyes Made in collaboration with Chris George for Art + ML Spring 2019.

Francisco Cabrera 1 Jan 12, 2022
Python package for causal inference using Bayesian structural time-series models.

Python Causal Impact Causal inference using Bayesian structural time-series models. This package aims at defining a python equivalent of the R CausalI

Thomas Cassou 219 Dec 11, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc

Sebastian Raschka 4.2k Dec 29, 2022
A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.

Machine Learning Notebooks, 3rd edition This project aims at teaching you the fundamentals of Machine Learning in python. It contains the example code

Aurélien Geron 1.6k Jan 05, 2023
Probabilistic programming framework that facilitates objective model selection for time-varying parameter models.

Time series analysis today is an important cornerstone of quantitative science in many disciplines, including natural and life sciences as well as eco

Christoph Mark 129 Dec 24, 2022
Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way

Apache Liminals goal is to operationalise the machine learning process, allowing data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validat

The Apache Software Foundation 121 Dec 28, 2022
Machine learning template for projects based on sklearn library.

Machine learning template for projects based on sklearn library.

Janez Lapajne 17 Oct 28, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
hgboost - Hyperoptimized Gradient Boosting

hgboost is short for Hyperoptimized Gradient Boosting and is a python package for hyperparameter optimization for xgboost, catboost and lightboost using cross-validation, and evaluating the results o

Erdogan Taskesen 34 Jan 03, 2023
Markov bot - A Writing bot based on Markov Chain for Data Structure Lab

基于马尔可夫链的写作机器人 前端 用html/css完成 Demo展示(已给出文本的相应展示) 用户提供相关的语料库后训练的成果 后端 要完成的几个接口 解析文

DysprosiumDy 9 May 05, 2022
Python Automated Machine Learning library for tabular data.

Simple but powerful Automated Machine Learning library for tabular data. It uses efficient in-memory SAP HANA algorithms to automate routine Data Scie

Daniel Khromov 47 Dec 17, 2022
PySpark ML Bank Churn Prediction

PySpark-Bank-Churn Surname: corresponds to the record (row) number and has no effect on the output. CreditScore: contains random values and has no eff

kemalgunay 2 Nov 11, 2021
Spark development environment for k8s

Local Spark Dev Env with Docker Development environment for k8s. Using the spark-operator image to ensure it will be the same environment. Start conta

Otacilio Filho 18 Jan 04, 2022
My capstone project for Udacity's Machine Learning Nanodegree

MLND-Capstone My capstone project for Udacity's Machine Learning Nanodegree Lane Detection with Deep Learning In this project, I use a deep learning-b

Michael Virgo 407 Dec 12, 2022
PyPOTS - A Python Toolbox for Data Mining on Partially-Observed Time Series

A python toolbox/library for data mining on partially-observed time series, supporting tasks of forecasting/imputation/classification/clustering on incomplete multivariate time series with missing va

Wenjie Du 179 Dec 31, 2022
Mixing up the Invariant Information clustering architecture, with self supervised concepts from SimCLR and MoCo approaches

Self Supervised clusterer Combined IIC, and Moco architectures, with some SimCLR notions, to get state of the art unsupervised clustering while retain

Bendidi Ihab 9 Feb 13, 2022
Confidence intervals for scikit-learn forest algorithms

forest-confidence-interval: Confidence intervals for Forest algorithms Forest algorithms are powerful ensemble methods for classification and regressi

272 Dec 01, 2022