AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

Overview

AutoTabular

Paper Conference Conference Conference

AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models tabular data.

autotabular

What's good in it?

  • It is using the RAPIDS as back-end support, gives you the ability to execute end-to-end data science and analytics pipelines entirely on GPUs.
  • It Supports many anomaly detection models: ,
  • It using meta learning to accelerate model selection and parameter tuning.
  • It is using many Deep Learning models for tabular data: Wide&Deep, DCN(Deep & Cross Network), FM, DeepFM, PNN ...
  • It is using many machine learning algorithms: Baseline, Linear, Random Forest, Extra Trees, LightGBM, Xgboost, CatBoost, and Nearest Neighbors.
  • It can compute Ensemble based on greedy algorithm from Caruana paper.
  • It can stack models to build level 2 ensemble (available in Compete mode or after setting stack_models parameter).
  • It can do features preprocessing, like: missing values imputation and converting categoricals. What is more, it can also handle target values preprocessing.
  • It can do advanced features engineering, like: Golden Features, Features Selection, Text and Time Transformations.
  • It can tune hyper-parameters with not-so-random-search algorithm (random-search over defined set of values) and hill climbing to fine-tune final models.

Example

First, install dependencies

# clone project
git clone https://apulis-gitlab.apulis.cn/apulis/AutoTabular/autotabular.git

# install project
cd autotabular
pip install -e .
pip install -r requirements.txt

Next, navigate to any file and run it.

# module folder
cd example

# run module (example: mnist as your main contribution)
python demo.py

Citation

If you use AutoTabular in a scientific publication, please cite the following paper:

Robin, et al. "AutoTabular: Robust and Accurate AutoML for Structured Data." arXiv preprint arXiv:2003.06505 (2021).

BibTeX entry:

@article{agtabular,
  title={AutoTabular: Robust and Accurate AutoML for Structured Data},
  author={JianZheng, WenQi},
  journal={arXiv preprint arXiv:2003.06505},
  year={2021}
}

License

This library is licensed under the Apache 2.0 License.

Contributing to AutoTabular

We are actively accepting code contributions to the AutoTabular project. If you are interested in contributing to AutoTabular, please contact me.

Owner
Robin
Machine learning Statistics
Robin
My capstone project for Udacity's Machine Learning Nanodegree

MLND-Capstone My capstone project for Udacity's Machine Learning Nanodegree Lane Detection with Deep Learning In this project, I use a deep learning-b

Michael Virgo 407 Dec 12, 2022
In this Repo a simple Sklearn Model will be trained and pushed to MLFlow

SKlearn_to_MLFLow In this Repo a simple Sklearn Model will be trained and pushed to MLFlow Install This Repo is based on poetry python3 -m venv .venv

1 Dec 13, 2021
Accelerating model creation and evaluation.

EmeraldML A machine learning library for streamlining the process of (1) cleaning and splitting data, (2) training, optimizing, and testing various mo

Yusuf 0 Dec 06, 2021
A python library for easy manipulation and forecasting of time series.

Time Series Made Easy in Python darts is a python library for easy manipulation and forecasting of time series. It contains a variety of models, from

Unit8 5.2k Jan 04, 2023
Machine learning template for projects based on sklearn library.

Machine learning template for projects based on sklearn library.

Janez Lapajne 17 Oct 28, 2022
This machine learning model was developed for House Prices

This machine learning model was developed for House Prices - Advanced Regression Techniques competition in Kaggle by using several machine learning models such as Random Forest, XGBoost and LightGBM.

serhat_derya 1 Mar 02, 2022
A complete guide to start and improve in machine learning (ML)

A complete guide to start and improve in machine learning (ML), artificial intelligence (AI) in 2021 without ANY background in the field and stay up-to-date with the latest news and state-of-the-art

Louis-François Bouchard 3.3k Jan 04, 2023
MegFlow - Efficient ML solutions for long-tailed demands.

Efficient ML solutions for long-tailed demands.

旷视天元 MegEngine 371 Dec 21, 2022
onelearn: Online learning in Python

onelearn: Online learning in Python Documentation | Reproduce experiments | onelearn stands for ONE-shot LEARNning. It is a small python package for o

15 Nov 06, 2022
DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning.

DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning. DirectML provides GPU acceleration for common machine learning tasks across a broad range of supported ha

Microsoft 1.1k Jan 04, 2023
MLBox is a powerful Automated Machine Learning python library.

MLBox is a powerful Automated Machine Learning python library. It provides the following features: Fast reading and distributed data preprocessing/cle

Axel 1.4k Jan 06, 2023
K-Means clusternig example with Python and Scikit-learn

Unsupervised-Machine-Learning Flat Clustering K-Means clusternig example with Python and Scikit-learn Flat clustering Clustering algorithms group a se

Emin 1 Dec 13, 2021
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
cleanlab is the data-centric ML ops package for machine learning with noisy labels.

cleanlab is the data-centric ML ops package for machine learning with noisy labels. cleanlab cleans labels and supports finding, quantifying, and lear

Cleanlab 51 Nov 28, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
PyPOTS - A Python Toolbox for Data Mining on Partially-Observed Time Series

A python toolbox/library for data mining on partially-observed time series, supporting tasks of forecasting/imputation/classification/clustering on incomplete multivariate time series with missing va

Wenjie Du 179 Dec 31, 2022
Uber Open Source 1.6k Dec 31, 2022
Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared

Feature-Engineering Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared. When the dataset

kemalgunay 5 Apr 21, 2022
Probabilistic time series modeling in Python

GluonTS - Probabilistic Time Series Modeling in Python GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (

Amazon Web Services - Labs 3.3k Jan 03, 2023
End to End toy example of MLOps

churn_model MLOps Toy Example End to End You might find below links useful Connect VSCode to Git MLFlow Port Heroku App Project Organization ├── LICEN

Ashish Tele 6 Feb 06, 2022