Semi-supervised Learning for Sentiment Analysis

Overview

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining

Code, models and Datasets for《Neural Semi-supervised Learning for Text Classification Under Large-Scale Pretraining》.

Download Models and Dataset

Datasets and Models are found in the follwing list.

  • Download 3.4M IMDB movie reviews. Save the data at [REVIEWS_PATH]. You can download the dataset HERE.
  • Download the vanilla RoBERTa-large model released by HuggingFace. Save the model at [VANILLA_ROBERTA_LARGE_PATH]. You can download the model HERE.
  • Download in-domain pretrained models in the paper and save the model at [PRETRAIN_MODELS]. We provide three following models. You can download HERE.
    • init-roberta-base: RoBERTa-base model(U) trained over 3.4M movie reviews from scratch.
    • semi-roberta-base: RoBERTa-base model(Large U + U) trained over 3.4M movie reviews from the open-domain pretrained model RoBERTa-base model.
    • semi-roberta-large: RoBERTa-large model(Large U + U) trained over 3.4M movie reviews from the open-domain pretrained model RoBERTa-large model.
  • Download the 1M (D` + D) training dataset for the student model, save the data at [STUDENT_DATA_PATH]. You can download it HERE.
    • student_data_base: student training data generated by roberta-base teacher model
    • student_data_large: student training data generated by roberta-large teacher model
  • Download the IMDB dataset from Andrew Maas' paper. Save the data at [IMDB_DATA_PATH]. For IMDB, The training data and test data are saved in two separate files, each line in the file corresponds to one IMDB sample. You can download HERE.
  • Download shannon_preprocssor.whl to install a binarize tool. Save the .whl file at [SHANNON_PREPROCESS_WHL_PATH]. You can download HERE
  • Download the teacher model and student model that we trained. Save them at [CHECKPOINTS]. You can download HERE
    • roberta-base: teacher and student model checkpoint for roberta-base
    • roberta-large: teacher and student model checkpoint for roberta-large

Installation

pip install -r requirements.txt
pip install [SHANNON_PREPROCESS_WHL_PATH]

Quick Tour

train the roberta-large teacher model

Use the roberta model we pretrained over 3.4M reviews data to train teacher model.
Our teacher model had an accuracy rate of 96.2% on the test set.

cd sstc/tasks/semi-roberta
python trainer.py \
--mode train_teacher \
roberta_path [PRETRAIN_MODELS]\semi-roberta-large \
--imdb_data_path [IMDB_DATA_PATH]/bin \
--gpus=0,1,2,3 \
--save_path [ROOT_SAVE_PATH] \
--precision 16 \
--batch_size 10 \
--min_epochs 10 \
--patience 3 \
--lr 3e-5  

train the roberta-large student model

Use the roberta model we pretrained over 3.4M reviews data to train student model.
Our student model had an accuracy rate of 96.8% on the test set.

cd sstc/tasks/semi-roberta
python trainer.py \
--mode train_student \
--roberta_path [PRETRAIN_MODELS]\semi-roberta-large \
--imdb_data_path [IMDB_DATA_PATH]/bin \
--student_data_path [STUDENT_DATA_PATH]/student_data_large/bin \
--save_path [ROOT_SAVE_PATH] \
--batch_size=10 \
--precision 16 \
--lr=2e-5 \
--warmup_steps 40000 \
--gpus=0,1,2,3,4,5,6,7 \
--accumulate_grad_batches=50

evaluate the student model on the test set

Load student model checkpoint to evaluate over test set to reproduce our result.

cd sstc/tasks/semi-roberta
python evaluate.py \
--checkpoint_path [CHECKPOINTS]/roberta-large/train_student_checkpoint/***.ckpt \
--roberta_path [PRETRAIN_MODELS]\semi-roberta-large \
--imdb_data_path [IMDB_DATA_PATH]/bin \
--batch_size=10 \
--gpus=0,

Reproduce paper results step by step

1.Train in-domain LM based on RoBERTa

1.1 binarize 3.4M reviews data

You should modify the shell according to your paths. The result binarize data will be saved in [REVIEWS_PATH]/bin

cd sstc/tasks/roberta_lm
bash binarize.sh

1.2 train RoBERTa-large (or small, as you wish) over 3.4M reviews data

cd sstc/tasks/roberta_lm
python trainer.py \
--roberta_path [VANILLA_ROBERTA_LARGE_PATH] \
--data_dir [REVIEWS_PATH]/bin \
--gpus=0,1,2,3 \
--save_path [PRETRAIN_ROBERTA_CK_PATH] \
--val_check_interval 0.1 \
--precision 16 \
--batch_size 10 \
--distributed_backend=ddp \
--accumulate_grad_batches=50 \
--adam_epsilon 1e-6 \
--weight_decay 0.01 \
--warmup_steps 10000 \
--workers 8 \
--lr 2e-5

Training checkpoints will be saved in [PRETRAIN_ROBERTA_CK_PATH], find the best checkpoint and convert it to HuggingFace bin format, The relevant code can be found in sstc/tasks/roberta_lm/trainer.py. Save the pretrain bin model at [PRETRAIN_MODELS]\semi-roberta-large, or you can just download the model we trained.

2.train the teacher model

2.1 binarize IMDB dataset.

cd sstc/tasks/semi_roberta/scripts
bash binarize_imdb.sh

You can run the above code to binarize IMDB data, or you can just use the file we binarized in [IMDB_DATA_PATH]\bin

2.2 train the teacher model

cd sstc/tasks/semi_roberta
python trainer.py \
--mode train_teacher \
--roberta_path [PRETRAIN_MODELS]\semi-roberta-large \
--imdb_data_path [IMDB_DATA_PATH]/bin \
--gpus=0,1,2,3 \
--save_path [ROOT_SAVE_PATH] \
--precision 16 \
--batch_size 10 \
--min_epochs 10 \
--patience 3 \
--lr 3e-5  

After training, teacher model checkpoint will be save in [ROOT_SAVE_PATH]/train_teacher_checkpoint. The teacher model we trained had an accuracy rate of 96.2% on the test set. The download link of teacher model checkpoint can be found in quick tour part.

3.label the unlabeled in-domain data U

3.1 label 3.4M data

Use the teacher model that you trained in previous step to label 3.4M reviews data, notice that [ROOT_SAVE_PATH] should be the same as previous setting. The labeled data will be save in [ROOT_SAVE_PATH]\predictions.

cd sstc/tasks/roberta_lm
python trainer.py \
--mode train_teacher \
--roberta_path [PRETRAIN_ROBERTA_PATH] \
--reviews_data_path [REVIEWS_PATH]/bin \
--best_teacher_checkpoint_path [CHECKPOINTS]/roberta-large/train_teacher_checkpoint/***.ckpt \
--gpus=0,1,2,3 \
--save_path [ROOT_SAVE_PATH] 

3.2 select the top-K data points

Firstly, we random sample 3M data from 3.4M reviews data as U', then we select 1M data from U' with the highest score as D', finally, we concat the IMDB train data(D) and D' as train data for student model. The student train data will be saved in [ROOT_SAVE_PATH]\student_data\train.txt, or you can use the data we provide in [STUDENT_DATA_PATH]/student_data_large

cd sstc/tasks/roberta_lm
python data_selector.py \
--imdb_data_path [IMDB_DATA_PATH] \
--save_path [ROOT_SAVE_PATH] 

4.train the student model

4.1 binarize the dataset

You can use the same script in 3.1 to binarize student train data in [ROOT_SAVE_PATH]\student_data\train.txt

4.1 train the student model

use can use the training data we provide in [STUDENT_DATA_PATH]/student_data_large/bin or use your own training data in [ROOT_SAVE_PATH]\student_data\bin, make sure you set the right student_data_path.

cd sstc/tasks/semi-roberta
python trainer.py \
--mode train_student \
--roberta_path [PRETRAIN_MODELS]\semi-roberta-large \
--imdb_data_path [IMDB_DATA_PATH]/bin \
--student_data_path [STUDENT_DATA_PATH]/student_data_large/bin \
--save_path [ROOT_SAVE_PATH] \
--batch_size=10 \
--precision 16 \
--lr=2e-5 \
--warmup_steps 40000 \
--gpus=0,1,2,3,4,5,6,7 \
--accumulate_grad_batches=50

After training, student model checkpoint will be save in [ROOT_SAVE_PATH]/train_student_checkpoint. The student model we trained had an accuracy rate of 96.6% on the test set. The download link of student model checkpoint can be found in Quick tour part.

The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Thank you for you

Weirui Ye 671 Jan 03, 2023
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

Vision and Language Group@ MIL 23 Dec 21, 2022
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 906 Jan 04, 2023
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
I3-master-layout - Simple master and stack layout script

Simple master and stack layout script | ------ | ----- | | | | | Ma

Tobias S 18 Dec 05, 2022
Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector

HackED 2022 Team 3IQ - 2022 Imposter Detector By Aneeljyot Alagh, Curtis Kan, Jo

Joshua Ji 3 Aug 20, 2022
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
QT Py Media Knob using rotary encoder & neopixel ring

QTPy-Knob QT Py USB Media Knob using rotary encoder & neopixel ring The QTPy-Knob features: Media knob for volume up/down/mute with "qtpy-knob.py" Cir

Tod E. Kurt 56 Dec 30, 2022
Various operations like path tracking, counting, etc by using yolov5

Object-tracing-with-YOLOv5 Various operations like path tracking, counting, etc by using yolov5

Pawan Valluri 5 Nov 28, 2022
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links This repo provides the model, code & data of our paper: LinkBERT: Pretraining

Michihiro Yasunaga 264 Jan 01, 2023
DECAF: Deep Extreme Classification with Label Features

DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain

46 Nov 06, 2022
A sketch extractor for anime/illustration.

Anime2Sketch Anime2Sketch: A sketch extractor for illustration, anime art, manga By Xiaoyu Xiang Updates 2021.5.2: Upload more example results of anim

Xiaoyu Xiang 1.6k Jan 01, 2023
FLSim a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API

Federated Learning Simulator (FLSim) is a flexible, standalone core library that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such a

Meta Research 162 Jan 02, 2023
This repository is dedicated to developing and maintaining code for experiments with wide neural networks.

Wide-Networks This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameteri

Karl Hajjar 0 Nov 02, 2021
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
CSD: Consistency-based Semi-supervised learning for object Detection

CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation

80 Dec 15, 2022
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022
My solution for the 7th place / 245 in the Umoja Hack 2022 challenge

Umoja Hack 2022 : Insurance Claim Challenge My solution for the 7th place / 245 in the Umoja Hack 2022 challenge Umoja Hack Africa is a yearly hackath

Souames Annis 17 Jun 03, 2022