Semi-supervised Learning for Sentiment Analysis

Overview

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining

Code, models and Datasets for《Neural Semi-supervised Learning for Text Classification Under Large-Scale Pretraining》.

Download Models and Dataset

Datasets and Models are found in the follwing list.

  • Download 3.4M IMDB movie reviews. Save the data at [REVIEWS_PATH]. You can download the dataset HERE.
  • Download the vanilla RoBERTa-large model released by HuggingFace. Save the model at [VANILLA_ROBERTA_LARGE_PATH]. You can download the model HERE.
  • Download in-domain pretrained models in the paper and save the model at [PRETRAIN_MODELS]. We provide three following models. You can download HERE.
    • init-roberta-base: RoBERTa-base model(U) trained over 3.4M movie reviews from scratch.
    • semi-roberta-base: RoBERTa-base model(Large U + U) trained over 3.4M movie reviews from the open-domain pretrained model RoBERTa-base model.
    • semi-roberta-large: RoBERTa-large model(Large U + U) trained over 3.4M movie reviews from the open-domain pretrained model RoBERTa-large model.
  • Download the 1M (D` + D) training dataset for the student model, save the data at [STUDENT_DATA_PATH]. You can download it HERE.
    • student_data_base: student training data generated by roberta-base teacher model
    • student_data_large: student training data generated by roberta-large teacher model
  • Download the IMDB dataset from Andrew Maas' paper. Save the data at [IMDB_DATA_PATH]. For IMDB, The training data and test data are saved in two separate files, each line in the file corresponds to one IMDB sample. You can download HERE.
  • Download shannon_preprocssor.whl to install a binarize tool. Save the .whl file at [SHANNON_PREPROCESS_WHL_PATH]. You can download HERE
  • Download the teacher model and student model that we trained. Save them at [CHECKPOINTS]. You can download HERE
    • roberta-base: teacher and student model checkpoint for roberta-base
    • roberta-large: teacher and student model checkpoint for roberta-large

Installation

pip install -r requirements.txt
pip install [SHANNON_PREPROCESS_WHL_PATH]

Quick Tour

train the roberta-large teacher model

Use the roberta model we pretrained over 3.4M reviews data to train teacher model.
Our teacher model had an accuracy rate of 96.2% on the test set.

cd sstc/tasks/semi-roberta
python trainer.py \
--mode train_teacher \
roberta_path [PRETRAIN_MODELS]\semi-roberta-large \
--imdb_data_path [IMDB_DATA_PATH]/bin \
--gpus=0,1,2,3 \
--save_path [ROOT_SAVE_PATH] \
--precision 16 \
--batch_size 10 \
--min_epochs 10 \
--patience 3 \
--lr 3e-5  

train the roberta-large student model

Use the roberta model we pretrained over 3.4M reviews data to train student model.
Our student model had an accuracy rate of 96.8% on the test set.

cd sstc/tasks/semi-roberta
python trainer.py \
--mode train_student \
--roberta_path [PRETRAIN_MODELS]\semi-roberta-large \
--imdb_data_path [IMDB_DATA_PATH]/bin \
--student_data_path [STUDENT_DATA_PATH]/student_data_large/bin \
--save_path [ROOT_SAVE_PATH] \
--batch_size=10 \
--precision 16 \
--lr=2e-5 \
--warmup_steps 40000 \
--gpus=0,1,2,3,4,5,6,7 \
--accumulate_grad_batches=50

evaluate the student model on the test set

Load student model checkpoint to evaluate over test set to reproduce our result.

cd sstc/tasks/semi-roberta
python evaluate.py \
--checkpoint_path [CHECKPOINTS]/roberta-large/train_student_checkpoint/***.ckpt \
--roberta_path [PRETRAIN_MODELS]\semi-roberta-large \
--imdb_data_path [IMDB_DATA_PATH]/bin \
--batch_size=10 \
--gpus=0,

Reproduce paper results step by step

1.Train in-domain LM based on RoBERTa

1.1 binarize 3.4M reviews data

You should modify the shell according to your paths. The result binarize data will be saved in [REVIEWS_PATH]/bin

cd sstc/tasks/roberta_lm
bash binarize.sh

1.2 train RoBERTa-large (or small, as you wish) over 3.4M reviews data

cd sstc/tasks/roberta_lm
python trainer.py \
--roberta_path [VANILLA_ROBERTA_LARGE_PATH] \
--data_dir [REVIEWS_PATH]/bin \
--gpus=0,1,2,3 \
--save_path [PRETRAIN_ROBERTA_CK_PATH] \
--val_check_interval 0.1 \
--precision 16 \
--batch_size 10 \
--distributed_backend=ddp \
--accumulate_grad_batches=50 \
--adam_epsilon 1e-6 \
--weight_decay 0.01 \
--warmup_steps 10000 \
--workers 8 \
--lr 2e-5

Training checkpoints will be saved in [PRETRAIN_ROBERTA_CK_PATH], find the best checkpoint and convert it to HuggingFace bin format, The relevant code can be found in sstc/tasks/roberta_lm/trainer.py. Save the pretrain bin model at [PRETRAIN_MODELS]\semi-roberta-large, or you can just download the model we trained.

2.train the teacher model

2.1 binarize IMDB dataset.

cd sstc/tasks/semi_roberta/scripts
bash binarize_imdb.sh

You can run the above code to binarize IMDB data, or you can just use the file we binarized in [IMDB_DATA_PATH]\bin

2.2 train the teacher model

cd sstc/tasks/semi_roberta
python trainer.py \
--mode train_teacher \
--roberta_path [PRETRAIN_MODELS]\semi-roberta-large \
--imdb_data_path [IMDB_DATA_PATH]/bin \
--gpus=0,1,2,3 \
--save_path [ROOT_SAVE_PATH] \
--precision 16 \
--batch_size 10 \
--min_epochs 10 \
--patience 3 \
--lr 3e-5  

After training, teacher model checkpoint will be save in [ROOT_SAVE_PATH]/train_teacher_checkpoint. The teacher model we trained had an accuracy rate of 96.2% on the test set. The download link of teacher model checkpoint can be found in quick tour part.

3.label the unlabeled in-domain data U

3.1 label 3.4M data

Use the teacher model that you trained in previous step to label 3.4M reviews data, notice that [ROOT_SAVE_PATH] should be the same as previous setting. The labeled data will be save in [ROOT_SAVE_PATH]\predictions.

cd sstc/tasks/roberta_lm
python trainer.py \
--mode train_teacher \
--roberta_path [PRETRAIN_ROBERTA_PATH] \
--reviews_data_path [REVIEWS_PATH]/bin \
--best_teacher_checkpoint_path [CHECKPOINTS]/roberta-large/train_teacher_checkpoint/***.ckpt \
--gpus=0,1,2,3 \
--save_path [ROOT_SAVE_PATH] 

3.2 select the top-K data points

Firstly, we random sample 3M data from 3.4M reviews data as U', then we select 1M data from U' with the highest score as D', finally, we concat the IMDB train data(D) and D' as train data for student model. The student train data will be saved in [ROOT_SAVE_PATH]\student_data\train.txt, or you can use the data we provide in [STUDENT_DATA_PATH]/student_data_large

cd sstc/tasks/roberta_lm
python data_selector.py \
--imdb_data_path [IMDB_DATA_PATH] \
--save_path [ROOT_SAVE_PATH] 

4.train the student model

4.1 binarize the dataset

You can use the same script in 3.1 to binarize student train data in [ROOT_SAVE_PATH]\student_data\train.txt

4.1 train the student model

use can use the training data we provide in [STUDENT_DATA_PATH]/student_data_large/bin or use your own training data in [ROOT_SAVE_PATH]\student_data\bin, make sure you set the right student_data_path.

cd sstc/tasks/semi-roberta
python trainer.py \
--mode train_student \
--roberta_path [PRETRAIN_MODELS]\semi-roberta-large \
--imdb_data_path [IMDB_DATA_PATH]/bin \
--student_data_path [STUDENT_DATA_PATH]/student_data_large/bin \
--save_path [ROOT_SAVE_PATH] \
--batch_size=10 \
--precision 16 \
--lr=2e-5 \
--warmup_steps 40000 \
--gpus=0,1,2,3,4,5,6,7 \
--accumulate_grad_batches=50

After training, student model checkpoint will be save in [ROOT_SAVE_PATH]/train_student_checkpoint. The student model we trained had an accuracy rate of 96.6% on the test set. The download link of student model checkpoint can be found in Quick tour part.

Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

Brad 24 Nov 11, 2022
Reinforcement Learning for Portfolio Management

qtrader Reinforcement Learning for Portfolio Management Why Reinforcement Learning? Learns the optimal action, rather than models the market. Adaptive

Angelos Filos 406 Jan 01, 2023
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)

M2m: Imbalanced Classification via Major-to-minor Translation This repository contains code for the paper "M2m: Imbalanced Classification via Major-to

79 Oct 13, 2022
A PyTorch implementation of SIN: Superpixel Interpolation Network

SIN: Superpixel Interpolation Network This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

6 Sep 28, 2022
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
The code repository for "RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection" (ACM MM'21)

RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection (ACM MM'21) By Zhuofan Zong, Qianggang Cao, Biao Leng Introduction F

TempleX 9 Jul 30, 2022
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

SUO-SLAM This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv li

Robot Perception & Navigation Group (RPNG) 97 Jan 03, 2023
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Anshul Paigwar 114 Dec 29, 2022
Fast and Easy Infinite Neural Networks in Python

Neural Tangents ICLR 2020 Video | Paper | Quickstart | Install guide | Reference docs | Release notes Overview Neural Tangents is a high-level neural

Google 1.9k Jan 09, 2023
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Antoine Yang 108 Dec 27, 2022
Official implementation of Long-Short Transformer in PyTorch.

Long-Short Transformer (Transformer-LS) This repository hosts the code and models for the paper: Long-Short Transformer: Efficient Transformers for La

NVIDIA Corporation 198 Dec 29, 2022
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022
DROPO: Sim-to-Real Transfer with Offline Domain Randomization

DROPO: Sim-to-Real Transfer with Offline Domain Randomization Gabriele Tiboni, Karol Arndt, Ville Kyrki. This repository contains the code for the pap

Gabriele Tiboni 8 Dec 19, 2022
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022