FLSim a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API

Related tags

Deep LearningFLSim
Overview

Federated Learning Simulator (FLSim)

Federated Learning Simulator (FLSim) is a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such as computer vision and natural text. Currently FLSim supports cross-device FL, where millions of clients' devices (e.g. phones) traing a model collaboratively together.

FLSim is scalable and fast. It supports differential privacy (DP), secure aggregation (secAgg), and variety of compression techniques.

In FL, a model is trained collaboratively by multiple clients that each have their own local data, and a central server moderates training, e.g. by aggregating model updates from multiple clients.

In FLSim, developers only need to define a dataset, model, and metrics reporter. All other aspects of FL training are handled internally by the FLSim core library.

FLSim

Library Structure

FLSim core components follow the same semantic as FedAvg. The server comprises three main features: selector, aggregator, and optimizer at a high level. The selector selects clients for training, and the aggregate aggregates client updates until a round is complete. Then, the optimizer optimizes the server model based on the aggregated gradients. The server communicates with the clients via the channel. The channel then compresses the message between the server and the clients. Locally, the client composes of a dataset and a local optimizer. This local optimizer can be SGD, FedProx, or a custom Pytorch optimizer.

Installation

The latest release of FLSim can be installed via pip:

pip install flsim

You can also install directly from the source for the latest features (along with its quirks and potentially ocassional bugs):

git clone https://github.com/facebookresearch/FLSim.git
cd FLSim
pip install -e .

Getting started

To implement a central training loop in the FL setting using FLSim, a developer simply performs the following steps:

  1. Build their own data pipeline to assign individual rows of training data to client devices (to simulate data is distributed across client devices)
  2. Create a corresponding nn/Module model and wrap it in an FL model.
  3. Define a custom metrics reporter that computes and collects metrics of interest (e.g., accuracy) throughout training.
  4. Set the desired hyperparameters in a config.

Usage Example

Tutorials

To see the details, please refer to the tutorials that we have prepared.

Examples

We have prepared the runnable exampels for 2 of the tutorials above:

Contributing

See the CONTRIBUTING for how to contribute to this library.

License

This code is released under Apache 2.0, as found in the LICENSE file.

Comments
  • Bug Fix#36: fix imports in tests.

    Bug Fix#36: fix imports in tests.

    Types of changes

    • [x ] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [ ] Docs change / refactoring / dependency upgrade

    Motivation and Context / Related issue

    Bug Fix#36: fix imports in tests.

    How Has This Been Tested (if it applies)

    pytest -ra is able to discover all tests now.

    Checklist

    • [x] The documentation is up-to-date with the changes I made.
    • [x] I have read the CONTRIBUTING document and completed the CLA (see CONTRIBUTING).
    • [x ] All tests passed, and additional code has been covered with new tests.
    CLA Signed 
    opened by ghaccount 8
  • Vr

    Vr

    Types of changes

    • [ ] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [ ] Docs change / refactoring / dependency upgrade

    Motivation and Context / Related issue

    How Has This Been Tested (if it applies)

    Checklist

    • [ ] The documentation is up-to-date with the changes I made.
    • [ ] I have read the CONTRIBUTING document and completed the CLA (see CONTRIBUTING).
    • [ ] All tests passed, and additional code has been covered with new tests.
    CLA Signed 
    opened by JohnlNguyen 6
  • Move optimizer_test_utils to optimizers directory

    Move optimizer_test_utils to optimizers directory

    Summary: it is currently located at the top-level tests directory. However the top-level tests directory does not really make sense as each component is organized into its dedicated directory. optimizer_test_utils.py belongs to the optimizer directory in that sense. In this diff, we move the file to the optimizer directory and fixes the reference.

    Differential Revision: D32241821

    CLA Signed fb-exported Merged 
    opened by jessemin 3
  • Does the backend handle Federated learning asynchronously?

    Does the backend handle Federated learning asynchronously?

    I found this repo from this blog: - https://ai.facebook.com/blog/asynchronous-federated-learning/ However I do not find any mentioning on this repo and also I cannot decipher from the code examples whether this is synchronous version or asynchronous version of Federated learning? Can you please clarify this for me? And also if this is the asynchronous version how can I dive deeper in to the libraries and look at the code of implementation for the asynch handling mechanism?

    Thank you

    opened by 111Kaushal 2
  • Remove test_pytorch_local_dataset_factory

    Remove test_pytorch_local_dataset_factory

    Summary: This test had been very flaky about 1+ year ago an d never been revived since then. Deleting it from the codebase.

    Differential Revision: D32415979

    CLA Signed fb-exported Merged 
    opened by jessemin 2
  • FedSGD with virtual batching

    FedSGD with virtual batching

    πŸš€ Feature

    Motivation

    Create a memory efficient client to run FedSGD. If a client has many examples, running FedSGD (taking the gradient of the model based on all of the client's data) can lead to OOM. In this PR, we fix this problem by still calling optimizer.step once at the end of local training to simulate the effect of FedSGD.>

    opened by JohnlNguyen 0
  • Add Fednova as a benchmark

    Add Fednova as a benchmark

    Summary:

    What?

    Adding FedNova as a benchmark

    Why?

    FedNova is a well known paper that fixes the objective inconsistency problem

    Differential Revision: D34668291

    CLA Signed fb-exported 
    opened by JohnlNguyen 1
  • Having to `import flsim.configs`  before creating config from json is unintuitive

    Having to `import flsim.configs` before creating config from json is unintuitive

    πŸš€ Feature

    This code works

    import flsim.configs <-- 
    from flsim.utils.config_utils import fl_config_from_json
    
    json_config = {
        "trainer": {
        }
    }
    cfg = fl_config_from_json(json_config)
    

    This code doesn't work

    from flsim.utils.config_utils import fl_config_from_json
    
    json_config = {
        "trainer": {
        }
    }
    cfg = fl_config_from_json(json_config)
    

    Motivation

    Having to import flsim.configs is unintuitive and not clear from the user perspective

    Pitch

    Alternatives

    Additional context

    opened by JohnlNguyen 0
  • Fix sent140 example

    Fix sent140 example

    Summary:

    What?

    Fix tutorial to word embedding to resolve the poor accuracy problem

    Why?

    https://github.com/facebookresearch/FLSim/issues/34

    Differential Revision: D34149392

    CLA Signed fb-exported 
    opened by JohnlNguyen 1
  • low test accuracy in Sentiment classification with LEAF's Sent140 tutorial?

    low test accuracy in Sentiment classification with LEAF's Sent140 tutorial?

    ❓ Questions and Help

    Until we move the questions to another medium, feel free to use this as your question:

    Question

    I tried this tutorial https://github.com/facebookresearch/FLSim/blob/main/tutorials/sent140_tutorial.ipynb And accuracy is less that random guess (50%)!

    Any suggestions or approaches to improve accuracy for this tutorial?

    from tutorial: Running (epoch = 1, round = 1, global round = 1) for Test (epoch = 1, round = 1, global round = 1), Loss/Test: 0.8683878255035598 (epoch = 1, round = 1, global round = 1), Accuracy/Test: 49.61439588688946 {'Accuracy': 49.61439588688946}

    opened by ghaccount 0
Releases(v0.1.0)
  • v0.0.1(Dec 9, 2021)

    We are excited to announce the release of FLSim 0.0.1.

    Introduction

    How does one train a machine learning model without access to user data? Federated Learning (FL) is the technology that answers this question. In a nutshell, FL is a way for many users to learn a machine learning model without sharing data collaboratively. The two scenarios for FL, cross-silo and cross-device. Cross-silo provides technologies for collaborative learning between a few large organizations with massive silo datasets. Cross-device provides collaborative learning between many small user devices with small local datasets. Cross-device FL, where millions or even billions of users cooperate on learning a model, is a much more complex problem and attracted less attention from the research community. We designed FLSim to address the cross-device FL use case.

    Federated Learning at Scale

    Large-scale cross-device Federated Learning (FL) is a federated learning paradigm with several challenges that differentiate it from cross-silo FL: millions of clients coordinating with a central server and training instability due to the significant cohort problem. With these challenges in mind, we built FLSim to be scalable while easy to use, and FLSim can scale to thousands of clients per round using only 1 GPU. We hope FLSim will equip researchers to tackle problems with federated learning at scale.

    FLSim

    Library Structure

    FLSim core components follow the same semantic as FedAvg. The server comprises three main features: selector, aggregator, and optimizer at a high level. The selector selects clients for training, and the aggregate aggregates client updates until a round is complete. Then, the optimizer optimizes the server model based on the aggregated gradients. The server communicates with the clients via the channel. The channel then compresses the message between the server and the clients. Locally, the client composes of a dataset and a local optimizer. This local optimizer can be SGD, FedProx, or a custom Pytorch optimizer.

    Included Datasets

    Currently, FLSim supports all datasets from LEAF including FEMNIST, Shakespeare, Sent140, CelebA, Synthetic and Reddit. Additionally, we support MNIST and CIFAR-10.

    Included Algorithms

    FLSim supports standard FedAvg, and other federated learning methods such as FedAdam, FedProx, FedAvgM, FedBuff, FedLARS, and FedLAMB.

    What’s next?

    We hope FLSim will foster large-scale cross-device FL research. Soon, we plan to add support for personalization in early 2022. Throughout 2022, we plan to gather feedback and improve usability. We plan to continue to grow our collection of algorithms, datasets, and models.

    Source code(tar.gz)
    Source code(zip)
Owner
Meta Research
Meta Research
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
An open-source online reverse dictionary.

An open-source online reverse dictionary.

THUNLP 6.3k Jan 09, 2023
A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

This is a simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

crispengari 3 Jan 08, 2022
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, β€œ3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
Implementation for ACProp ( Momentum centering and asynchronous update for adaptive gradient methdos, NeurIPS 2021)

This repository contains code to reproduce results for submission NeurIPS 2021, "Momentum Centering and Asynchronous Update for Adaptive Gradient Meth

Juntang Zhuang 15 Jun 11, 2022
PyTorch implementation of SIFT descriptor

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
Source codes for "Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs"

Structure-Aware-BART This repo contains codes for the following paper: Jiaao Chen, Diyi Yang:Structure-Aware Abstractive Conversation Summarization vi

GT-SALT 56 Dec 08, 2022
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.

TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De

ycszen 1.4k Jan 02, 2023
BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer Accepted as Poster in BMVC 2021 This is an official implementation in P

Sauradip Nag 14 Dec 09, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques. arXiv: Colossal-AI: A Unified Deep Learning Syst

HPC-AI Tech 7.9k Jan 08, 2023
A DeepStack custom model for detecting common objects in dark/night images and videos.

DeepStack_ExDark This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for d

MOSES OLAFENWA 98 Dec 24, 2022
Deep-Learning-Book-Chapter-Summaries - Attempting to make the Deep Learning Book easier to understand.

Deep-Learning-Book-Chapter-Summaries This repository provides a summary for each chapter of the Deep Learning book by Ian Goodfellow, Yoshua Bengio an

Aman Dalmia 1k Dec 27, 2022
2 Jul 19, 2022
Classifying audio using Wavelet transform and deep learning

Audio Classification using Wavelet Transform and Deep Learning A step-by-step tutorial to classify audio signals using continuous wavelet transform (C

Aditya Dutt 17 Nov 29, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
Proto-RL: Reinforcement Learning with Prototypical Representations

Proto-RL: Reinforcement Learning with Prototypical Representations This is a PyTorch implementation of Proto-RL from Reinforcement Learning with Proto

Denis Yarats 74 Dec 06, 2022
AdaDM: Enabling Normalization for Image Super-Resolution

AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN

58 Jan 08, 2023
Implementation of paper "DeepTag: A General Framework for Fiducial Marker Design and Detection"

Implementation of paper DeepTag: A General Framework for Fiducial Marker Design and Detection. Project page: https://herohuyongtao.github.io/research/

Yongtao Hu 46 Dec 12, 2022