Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

Overview

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank which as been accepted as an oral paper in the IEEE International Conference on Computer Vision (ICCV) 2021.

This code is based on ClassMix code

Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

Prerequisites

  • CUDA/CUDNN
  • Python3
  • Packages found in requirements.txt

Contact

If any question, please either open a github issue or contact via email to: [email protected]

Datasets

Create a folder outsite the code folder:

mkdir ../data/

Cityscapes

mkdir ../data/CityScapes/

Download the dataset from (Link).

Download the files named 'gtFine_trainvaltest.zip', 'leftImg8bit_trainvaltest.zip' and extract in ../data/Cityscapes/

Pascal VOC 2012

mkdir ../data/VOC2012/

Download the dataset from (Link).

Download the file 'training/validation data' under 'Development kit' and extract in ../data/VOC2012/

GTA5

mkdir ../data/GTA5/

Download the dataset from (Link). Unzip all the datasets parts to create an structure like this:

../data/GTA5/images/val/*.png
../data/GTA5/images/train/*.png
../data/GTA5/labels/val/*.png
../data/GTA5/labels/train/*.png

Then, reformat the label images from colored images to training ids. For that, execute this:

python3 utils/translate_labels.py

Experiments

Here there are some examples for replicating the experiments from the paper. Implementation details are specified in the paper (section 4.2) any modification could potentially affect to the final result.

Semi-Supervised

Search here for the desired configuration:

ls ./configs/

For example, for this configuration:

  • Dataset: CityScapes
  • % of labels: 1/30
  • Pretrain: COCO
  • Split: 0
  • Network: Deeplabv2

Execute:

python3 trainSSL.py --config ./configs/configSSL_city_1_30_split0_COCO.json 

Another example, for this configuration:

  • Dataset: CityScapes
  • % of labels: 1/30
  • Pretrain: imagenet
  • Split: 0
  • Network: Deeplabv3+

Execute:

python3 trainSSL.py --config ./configs/configSSL_city_1_30_split0_v3.json 

For example, for this configuration:

  • Dataset: PASCAL VOC
  • % of labels: 1/50
  • Pretrain: COCO
  • Split: 0

Execute:

python3 trainSSL.py --config ./configs/configSSL_pascal_1_50_split0_COCO.json 

For replicating paper experiments, just execute the training of the specific set-up to replicate. We already provide all the configuration files used in the paper. For modifying them and a detail description of all the parameters in the configuration files, check this example:

Configuration File Description

2 for random splits "labeled_samples": 744, # Number of labeled samples to use for supervised learning. The rest will be use without labels. Options: any integer "input_size": "512,512" # Image crop size Options: any integer tuple } }, "seed": 5555, # seed for randomization. Options: any integer "ignore_label": 250, # ignore label value. Options: any integer "utils": { "save_checkpoint_every": 10000, # The model will be saved every this number of iterations. Options: any integer "checkpoint_dir": "../saved/DeepLab", # Path to save the models. Options: any path "val_per_iter": 1000, # The model will be evaluated every this number of iterations. Options: any integer "save_best_model": true # Whether to use teacher model for generating the psuedolabels. The student model wil obe used otherwise. Options: boolean } }">
{
  "model": "DeepLab", # Network architecture. Options: Deeplab
  "version": "2", # Version of the network architecture. Options: {2, 3} for deeplabv2 and deeplabv3+
  "dataset": "cityscapes", # Dataset to use. Options: {"cityscapes", "pascal"}

  "training": { 
    "batch_size": 5, # Batch size to use. Options: any integer
    "num_workers": 3, # Number of cpu workers (threads) to use for laoding the dataset. Options: any integer
    "optimizer": "SGD", # Optimizer to use. Options: {"SGD"}
    "momentum": 0.9, # momentum for SGD optimizer, Options: any float 
    "num_iterations": 100000, # Number of iterations to train. Options: any integer
    "learning_rate": 2e-4, # Learning rate. Options: any float
    "lr_schedule": "Poly", # decay scheduler for the learning rate. Options: {"Poly"}
    "lr_schedule_power": 0.9, # Power value for the Poly scheduler. Options: any float
    "pretraining": "COCO", # Pretraining to use. Options: {"COCO", "imagenet"}
    "weight_decay": 5e-4, # Weight decay. Options: any float
    "use_teacher_train": true, # Whether to use the teacher network to generate pseudolabels. Use student otherwise. Options: boolean. 
    "save_teacher_test": false, # Whether to save the teacher network as the model for testing. Use student otherwise. Options: boolean. 
    
    "data": {
      "split_id_list": 0, # Data splits to use. Options: {0, 1, 2} for pre-computed splits. N >2 for random splits
      "labeled_samples": 744, # Number of labeled samples to use for supervised learning. The rest will be use without labels. Options: any integer
      "input_size": "512,512" # Image crop size  Options: any integer tuple
    }

  },
  "seed": 5555, # seed for randomization. Options: any integer
  "ignore_label": 250, # ignore label value. Options: any integer

  "utils": {
    "save_checkpoint_every": 10000,  # The model will be saved every this number of iterations. Options: any integer
    "checkpoint_dir": "../saved/DeepLab", # Path to save the models. Options: any path
    "val_per_iter": 1000, # The model will be evaluated every this number of iterations. Options: any integer
    "save_best_model": true # Whether to use teacher model for generating the psuedolabels. The student model wil obe used otherwise. Options: boolean
  }
}

Memory Restrictions

All experiments have been run in an NVIDIA Tesla V100. To try to fit the training in a smaller GPU, try to follow this tips:

  • Reduce batch_size from the configuration file
  • Reduce input_size from the configuration file
  • Instead of using trainSSL.py use trainSSL_less_memory.py which optimized labeled and unlabeled data separate steps.

For example, for this configuration:

  • Dataset: PASCAL VOC
  • % of labels: 1/50
  • Pretrain: COCO
  • Split: 0
  • Batch size: 8
  • Crop size: 256x256 Execute:
python3 trainSSL_less_memory.py --config ./configs/configSSL_pascal_1_50_split2_COCO_reduced.json 

Semi-Supervised Domain Adaptation

Experiments for domain adaptation from GTA5 dataset to Cityscapes.

For example, for configuration:

  • % of labels: 1/30
  • Pretrain: Imagenet
  • Split: 0

Execute:

python3 trainSSL_domain_adaptation_targetCity.py --config ./configs/configSSL_city_1_30_split0_imagenet.json 

Evaluation

The training code will evaluate the training model every some specific number of iterations (modify the parameter val_per_iter in the configuration file).

Best evaluated model will be printed at the end of the training.

For every training, several weights will be saved under the path specified in the parameter checkpoint_dir of the configuration file.

One model every save_checkpoint_every (see configuration file) will be saved, plus the best evaluated model.

So, the model has trained we can already know the performance.

For a later evaluation, just execute the next command specifying the model to evaluate in the model-path argument:

python3 evaluateSSL.py --model-path ../saved/DeepLab/best.pth

Citation

If you find this work useful, please consider citing:

@inproceedings{alonso2021semi,
  title={Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank},
  author={Alonso, I{\~n}igo and Sabater, Alberto and Ferstl, David and Montesano, Luis and Murillo, Ana C},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  year={2021}
}

License

Thi code is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Owner
Iñigo Alonso Ruiz
PhD student (University of Zaragoza)
Iñigo Alonso Ruiz
Source code and data in paper "MDFEND: Multi-domain Fake News Detection (CIKM'21)"

MDFEND: Multi-domain Fake News Detection This is an official implementation for MDFEND: Multi-domain Fake News Detection which has been accepted by CI

Rich 40 Dec 18, 2022
RP-GAN: Stable GAN Training with Random Projections

RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna

Ayan Chakrabarti 20 Sep 18, 2021
Low-code/No-code approach for deep learning inference on devices

EzEdgeAI A concept project that uses a low-code/no-code approach to implement deep learning inference on devices. It provides a componentized framewor

On-Device AI Co., Ltd. 7 Apr 05, 2022
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

40 Nov 30, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19) Official pytorch implementation of the paper: "SinGAN: Learning a Generative M

Tamar Rott Shaham 3.2k Dec 25, 2022
Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

DD3D: "Is Pseudo-Lidar needed for Monocular 3D Object detection?" Install // Datasets // Experiments // Models // License // Reference Full video Offi

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image.

Deep Illuminator Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide

George Chogovadze 52 Nov 29, 2022
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 04, 2023
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Google Cloud Platform 792 Dec 28, 2022
Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

Chumui Tripura 0 Oct 31, 2021
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023
Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Distant Supervision for Scene Graph Generation Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation. Introduction The pape

THUNLP 23 Dec 31, 2022
Fuzzing JavaScript Engines with Aspect-preserving Mutation

DIE Repository for "Fuzzing JavaScript Engines with Aspect-preserving Mutation" (in S&P'20). You can check the paper for technical details. Environmen

gts3.org (<a href=[email protected])"> 190 Dec 11, 2022
SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

Sayed Hashim 3 Nov 15, 2022
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
Real-time 3D multi-person detection made easy with OpenPose and the ZED

OpenPose ZED This sample show how to simply use the ZED with OpenPose, the deep learning framework that detects the skeleton from a single 2D image. T

blanktec 5 Nov 06, 2020
This is the code for CVPR 2021 oral paper: Jigsaw Clustering for Unsupervised Visual Representation Learning

JigsawClustering Jigsaw Clustering for Unsupervised Visual Representation Learning Pengguang Chen, Shu Liu, Jiaya Jia Introduction This project provid

DV Lab 73 Sep 18, 2022
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation (ICCV 2021)

Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation Home | PyTorch BigGAN Discovery | TensorFlow ProGAN Regulariza

Yuxiang Wei 54 Dec 30, 2022
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023