Active and Sample-Efficient Model Evaluation

Overview

Active Testing: Sample-Efficient Model Evaluation

Hi, good to see you here! 👋

This is code for "Active Testing: Sample-Efficient Model Evaluation".

Please cite our paper, if you find this helpful:

@article{kossen2021active,
  title={{A}ctive {T}esting: {S}ample-{E}fficient {M}odel {E}valuation},
  author={Kossen, Jannik and Farquhar, Sebastian and Gal, Yarin and Rainforth, Tom},
  journal={arXiv:2103.05331},
  year={2021}
}

animation

Setup

The requirements.txt can be used to set up a python environment for this codebase. You can do this, for example, with conda:

conda create -n isactive python=3.8
conda activate isactive
pip install -r requirements.txt

Reproducing the Experiments

  • To reproduce a figure of the paper, first run the appropriate experiments
sh reproduce/experiments/figure-X.sh
  • And then create the plots with the Jupyter Notebook at
notebooks/plots_paper.ipynb
  • (The notebook let's you conveniently select which plots to recreate.)

  • Which should put plots into notebooks/plots/.

  • In the above, replace X by

    • 123 for Figures 1, 2, 3
    • 4 for Figure 4
    • 5 for Figure 5
    • 6 for Figure 6
    • 7 for Figure 7
  • Other notes

    • Synthetic data experiments do not require GPUs and should run on pretty much all recent hardware.
    • All other plots, realistically speaking, require GPUs.
    • We are also happy to share a 4 GB file with results from all experiments presented in the paper.
    • You may want to produce plots 7 and 8 for other experiment setups than the one in the paper, i.e. ones you already have computed.
    • Some experiments, e.g. those for Figures 4 or 6, may run a really long time on a single GPU. It may be good to
      • execute the scripts in the sh-files in parallel on multiple GPUs.
      • start multiple runs in parallel and then combine experiments. (See below).
      • end the runs early / decrease number of total runs (this can be very reasonable -- look at the config files in conf/paper to modify this property)
    • If you want to understand the code, below we give a good strategy for approaching it. (Also start with synthetic data experiments. They have less complex code!)

Running A Custom Experiment

  • main.py is the main entry point into this code-base.

    • It executes a a total of n_runs active testing experiments for a fixed setup.
    • Each experiment:
      • Trains (or loads) one main model.
      • This model can then be evaluated with a variety of acquisition strategies.
      • Risk estimates are then computed for points/weights from all acquisition strategies for all risk estimators.
  • This repository uses Hydra to manage configs.

    • Look at conf/config.yaml or one of the experiments in conf/... for default configs and hyperparameters.
    • Experiments are autologged and results saved to ./output/.
  • See notebooks/eplore_experiment.ipynb for some example code on how to evaluate custom experiments.

    • The evaluations use activetesting.visualize.Visualiser which implements visualisation methods.
    • Give it a path to an experiment in output/path/to/experiment and explore the methods.
    • If you want to combine data from multiple runs, give it a list of paths.
    • I prefer to load this in Jupyter Notebooks, but hey, everybody's different.
  • A guide to the code

    • main.py runs repeated experiments and orchestrates the whole shebang.
      • It iterates through all n_runs and acquisition strategies.
    • experiment.py handles a single experiment.
      • It combines the model, dataset, acquisition strategy, and risk estimators.
    • datasets.py, aquisition.py, loss.py, risk_estimators.py all contain exactly what you would expect!
    • hoover.py is a logging module.
    • models/ contains all models, scikit-learn and pyTorch.
      • In sk2torch.py we have some code that wraps torch models in a way that lets them be used as scikit-learn models from the outside.

And Finally

Thanks for stopping by!

If you find anything wrong with the code, please contact us.

We are happy to answer any questions related to the code and project.

Owner
Jannik Kossen
PhD Student at OATML Oxford
Jannik Kossen
KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

KDD CUP 2020: AutoGraph Team: aister Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei Team Introduc

96 May 30, 2022
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
small collection of functions for neural networks

neurobiba other languages: RU small collection of functions for neural networks. very easy to use! Installation: pip install neurobiba See examples h

4 Aug 23, 2021
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Packt 1.5k Jan 03, 2023
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
In this project, we'll be making our own screen recorder in Python using some libraries.

Screen Recorder in Python Project Description: In this project, we'll be making our own screen recorder in Python using some libraries. Requirements:

Hassan Shahzad 4 Jan 24, 2022
《Geo Word Clouds》paper implementation

《Geo Word Clouds》paper implementation

Russellwzr 2 Jan 28, 2022
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Experiments and examples converting Transformers to ONNX

Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON

Philipp Schmid 4 Dec 24, 2022
This is the official implementation for the paper "Heterogeneous Multi-player Multi-armed Bandits: Closing the Gap and Generalization" in NeurIPS 2021.

MPMAB_BEACON This is code used for the paper "Decentralized Multi-player Multi-armed Bandits: Beyond Linear Reward Functions", Neurips 2021. Requireme

Cong Shen Research Group 0 Oct 26, 2021
Intrusion Test Tool with Python

P3ntsT00L Uma ferramenta escrita em Python, feita para Teste de intrusão. Requisitos ter o python 3.9.8 instalado em sua máquina. ter a git instalada

josh washington 2 Dec 27, 2021
MANO hand model porting for the GraspIt simulator

Learning Joint Reconstruction of Hands and Manipulated Objects - ManoGrasp Porting the MANO hand model to GraspIt! simulator Yana Hasson, Gül Varol, D

Lucas Wohlhart 10 Feb 08, 2022
Code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2021

The repo provides the code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2

Yuning Mao 18 May 24, 2022
BiSeNet based on pytorch

BiSeNet BiSeNet based on pytorch 0.4.1 and python 3.6 Dataset Download CamVid dataset from Google Drive or Baidu Yun(6xw4). Pretrained model Download

367 Dec 26, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
A simple version for graphfpn

GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn

WorldGame 67 Dec 25, 2022
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re

daniel grzech 14 Nov 21, 2022