python library for invisible image watermark (blind image watermark)

Overview

invisible-watermark

PyPI License Python Platform Downloads

invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image watermark, digital image watermark). The algorithm doesn't reply on the original image.

Note that this library is still experimental and it doesn't support GPU acceleration, carefully deploy it on the production environment. The default method dwtDCT(one variant of frequency methods) is ready for on-the-fly embedding, the other methods are too slow on a CPU only environment.

supported algorithms

speed

  • default embedding method dwtDct is fast and suitable for on-the-fly embedding
  • dwtDctSvd is 3x slower and rivaGan is 10x slower, for large image they are not suitable for on-the-fly embedding

accuracy

  • The algorithm cannot gurantee to decode the original watermarks 100% accurately even though we don't apply any attack.
  • Known defects: Test shows all algorithms do not perform well for web page screenshots or posters with homogenous background color

Supported Algorithms

  • dwtDct: DWT + DCT transform, embed watermark bit into max non-trivial coefficient of block dct coefficents

  • dwtDctSvd: DWT + DCT transform, SVD decomposition of each block, embed watermark bit into singular value decomposition

  • rivaGan: encoder/decoder model with Attention mechanism + embed watermark bits into vector.

background:

How to install

pip install invisible-watermark

Library API

Embed watermark

  • example embed 4 characters (32 bits) watermark
import cv2
from imwatermark import WatermarkEncoder

bgr = cv2.imread('test.png')
wm = 'test'

encoder = WatermarkEncoder()
encoder.set_watermark('bytes', wm.encode('utf-8'))
bgr_encoded = encoder.encode(bgr, 'dwtDct')

cv2.imwrite('test_wm.png', bgr_encoded)

Decode watermark

  • example decode 4 characters (32 bits) watermark
import cv2
from imwatermark import WatermarkDecoder

bgr = cv2.imread('test_wm.png')

decoder = WatermarkDecoder('bytes', 32)
watermark = decoder.decode(bgr, 'dwtDct')
print(watermark.decode('utf-8'))

CLI Usage

embed watermark:  ./invisible-watermark -v -a encode -t bytes -m dwtDct -w 'hello' -o ./test_vectors/wm.png ./test_vectors/original.jpg

decode watermark: ./invisible-watermark -v -a decode -t bytes -m dwtDct -l 40 ./test_vectors/wm.png

positional arguments:
  input                 The path of input

optional arguments:
  -h, --help            show this help message and exit
  -a ACTION, --action ACTION
                        encode|decode (default: None)
  -t TYPE, --type TYPE  bytes|b16|bits|uuid|ipv4 (default: bits)
  -m METHOD, --method METHOD
                        dwtDct|dwtDctSvd|rivaGan (default: maxDct)
  -w WATERMARK, --watermark WATERMARK
                        embedded string (default: )
  -l LENGTH, --length LENGTH
                        watermark bits length, required for bytes|b16|bits
                        watermark (default: 0)
  -o OUTPUT, --output OUTPUT
                        The path of output (default: None)
  -v, --verbose         print info (default: False)

Test Result

For better doc reading, we compress all images in this page, but the test is taken on 1920x1080 original image.

Methods are not robust to resize or aspect ratio changed crop but robust to noise, color filter, brightness and jpg compress.

rivaGan outperforms the default method on crop attack.

only default method is ready for on-the-fly embedding.

Input

  • Input Image: 1960x1080 Image
  • Watermark:
    • For freq method, we use 64bits, string expression "qingquan"
    • For RivaGan method, we use 32bits, string expression "qing"
  • Parameters: only take U frame to keep image quality, scale=36

Attack Performance

Watermarked Image

wm

Attacks Image Freq Method RivaGan
JPG Compress wm_jpg Pass Pass
Noise wm_noise Pass Pass
Brightness wm_darken Pass Pass
Overlay wm_overlay Pass Pass
Mask wm_mask_large Pass Pass
crop 7x5 wm_crop_7x5 Fail Pass
Resize 50% wm_resize_half Fail Fail
Rotate 30 degress wm_rotate Fail Fail

Running Speed (CPU Only)

Image Method Encoding Decoding
1920x1080 dwtDct 300-350ms 150ms-200ms
1920x1080 dwtDctSvd 1500ms-2s ~1s
1920x1080 rivaGan ~5s 4-5s
600x600 dwtDct 70ms 60ms
600x600 dwtDctSvd 185ms 320ms
600x600 rivaGan 1s 600ms

RivaGAN Experimental

Further, We will deliver the 64bit rivaGan model and test the performance on GPU environment.

Detail: https://github.com/DAI-Lab/RivaGAN

Zhang, Kevin Alex and Xu, Lei and Cuesta-Infante, Alfredo and Veeramachaneni, Kalyan. Robust Invisible Video Watermarking with Attention. MIT EECS, September 2019.[PDF]

You might also like...
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior
[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior

pytorch-deep-video-prior (DVP) Official PyTorch implementation for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior TensorFlo

DAN: Unfolding the Alternating Optimization for Blind Super Resolution

DAN-Basd-on-Openmmlab DAN: Unfolding the Alternating Optimization for Blind Super Resolution We reproduce DAN via mmediting based on open-sourced code

Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis
Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis [Paper] [Online Demo] The following results are obtained by our SCUNet with purely syn

Fast image augmentation library and easy to use wrapper around other libraries. Documentation:  https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

Comments
  • Potentially performance issues

    Potentially performance issues

    When using an image larger than 1MB the performance degradates quickly. What we observe is that with an image of 1920 × 1080 the performance is great, but using an image of 9504 × 6336 inside a container with 20GB of RAM after ~40 minutes the flask repository we put on top of the library crashes because the container is OOM. Is there a way to improve performance in this sense?

    opened by luca-simonetti 0
  • CLI decode doesn't work if output image is JPG

    CLI decode doesn't work if output image is JPG

    I'm trying to use as CLI and python script to generate a wmrked JPG but watermark decode doesn't show anything:

    C:\Users\me\AppData\Local\Programs\Python\Python310\Scripts>py invisible-watermark "F:\JPEG\_DSC5341.jpg" -v -a encode -t bytes -m dwtDct -w '1234' -o "F:\JPEG\_DSC5341-w.jpg"
    watermark length: 48
    encode time ms: 2819.3318843841553
    
    C:\Users\me\AppData\Local\Programs\Python\Python310\Scripts>py invisible-watermark "F:\JPEG\_DSC5341-w.jpg" -v -a decode -t bytes -m dwtDct -l 48
    decode time ms: 1944.9546337127686
    

    It's like there is no watermark impressed in it, unless I use a PNG as output. I posted the images I'm using for test purpouses.

    raw img test wm img test_wm

    opened by TheNemus 0
  • Example code not working

    Example code not working

    encoded the image, then decoding returned nothing, not "test" like expected.

    edit: tried with a different png image: Traceback (most recent call last): File "/home/me/whisper/decode.py", line 8, in print(watermark.decode('utf-8')) UnicodeDecodeError: 'utf-8' codec can't decode byte 0xff in position 0: invalid start byte

    opened by ClashSAN 0
  • How does this work?

    How does this work?

    I think a quick blurb about how the watermarks implemented by this package work would be helpful. Is it the pixel rounding that I can read about here? https://invisiblewatermark.net/how-invisible-watermarks-work.html

    opened by kevinlinxc 0
Releases(0.1.5)
Owner
Shield Mountain
Video on demand with multi DRM enterprise solutions
Shield Mountain
SCU OlympicsRunning Baseline

Competition 1v1 running Environment check details in Jidi Competition RLChina2021智能体竞赛 做出的修改: 奖励重塑:修改了环境,重新设置了奖励的分配,使得奖励组成不只有零和博弈,还有探索环境的奖励。 算法微调:修改了官

ZiSeoi Wong 2 Nov 23, 2021
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
Reference implementation for Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Diffusion Probabilistic Models This repository provides a reference implementation of the method described in the paper: Deep Unsupervised Learning us

Jascha Sohl-Dickstein 238 Jan 02, 2023
Image-retrieval-baseline - MUGE Multimodal Retrieval Baseline

MUGE Multimodal Retrieval Baseline This repo is implemented based on the open_cl

47 Dec 16, 2022
A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up/down.

HandTrackingBrightnessControl A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up

Teemu Laurila 19 Feb 12, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
The hippynn python package - a modular library for atomistic machine learning with pytorch.

The hippynn python package - a modular library for atomistic machine learning with pytorch. We aim to provide a powerful library for the training of a

Los Alamos National Laboratory 37 Dec 29, 2022
π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis Project Page | Paper | Data Eric Ryan Chan*, Marco Monteiro*, Pe

375 Dec 31, 2022
Object detection on multiple datasets with an automatically learned unified label space.

Simple multi-dataset detection An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of E

Xingyi Zhou 407 Dec 30, 2022
FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation

This repository contains the code accompanying the paper " FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation" Paper link: R

20 Jun 29, 2022
RE3: State Entropy Maximization with Random Encoders for Efficient Exploration

State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021) Code for State Entropy Maximization with Random Encoders f

Younggyo Seo 47 Nov 29, 2022
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing

InsTrim The paper: InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing Build Prerequisite llvm-8.0-dev clang-8.0 cmake = 3.2 Make git cl

75 Dec 23, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021) Project Page | Video | Paper | Data We present a novel metho

65 Nov 28, 2022
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022