Object detection on multiple datasets with an automatically learned unified label space.

Overview

Simple multi-dataset detection

An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of ECCV 2020 Robust Vision Challenges.

Simple multi-dataset detection,
Xingyi Zhou, Vladlen Koltun, Philipp Krähenbühl,
arXiv technical report (arXiv 2102.13086)

Contact: [email protected]. Any questions or discussions are welcomed!

Abstract

How do we build a general and broad object detection system? We use all labels of all concepts ever annotated. These labels span diverse datasets with potentially inconsistent taxonomies. In this paper, we present a simple method for training a unified detector on multiple large-scale datasets. We use dataset-specific training protocols and losses, but share a common detection architecture with dataset-specific outputs. We show how to automatically integrate these dataset-specific outputs into a common semantic taxonomy. In contrast to prior work, our approach does not require manual taxonomy reconciliation. Our multi-dataset detector performs as well as dataset-specific models on each training domain, but generalizes much better to new unseen domains. Entries based on the presented methodology ranked first in the object detection and instance segmentation tracks of the ECCV 2020 Robust Vision Challenge.

Features at a glance

  • We trained a unified object detector on 4 large-scale detection datasets: COCO, Objects365, OpenImages, and Mapillary, with state-of-the-art performance on all of them.

  • The model predicts class labels in a learned unified label space.

  • The model can be directly used to test on novel datasets outside the training datasets.

  • In this repo, we also provide state-of-the-art baselines for Objects365 and OpenImages.

Main results

COCO test-challenge OpenImages public test Mapillary test Objects365 val
52.9 60.6 25.3 33.7

Results are obtained using a Cascade-RCNN with ResNeSt200 trained in an 8x schedule.

  • Unified model vs. ensemble of dataset-specific models with known test domains.
COCO Objects365 OpenImages mean.
Unified 45.4 24.4 66.0 45.3
Dataset-specific models 42.5 24.9 65.7 44.4

Results are obtained using a Cascade-RCNN with Res50 trained in an 8x schedule.

  • Zero-shot cross dataset evaluation
VOC VIPER CityScapes ScanNet WildDash CrowdHuman KITTI mean
Unified 82.9 21.3 52.6 29.8 34.7 70.7 39.9 47.3
Oracle models 80.3 31.8 54.6 44.7 - 80.0 - -

Results are obtained using a Cascade-RCNN with Res50 trained in an 8x schedule.

More models can be found in our MODEL ZOO.

Installation

Our project is developed on detectron2. Please follow the official detectron2 installation. All our code is under projects/UniDet/. In theory, you should be able to copy-paste projects/UniDet/ to the latest detectron2 release or your own detectron2 repo to run our project. There might be API changes in future detectron2 releases that make it incompatible.

Demo

We use the same inference API as detectorn2. To run inference on an image folder using our pretrained model, run

python projects/UniDet/demo/demo.py --config-file projects/UniDet/configs/Unified_learned_OCIM_R50_6x+2x.yaml --input images/*.jpg --opts MODEL.WEIGHTS models/Unified_learned_OCIM_R50_6x+2x.pth

If setup correctly, the output should look like:

*The sample image is from WildDash dataset.

Note that the model predicts all labels in its label hierarchy tree (for example, both vehicle and car for a car), following the protocol in OpenImages.

Benchmark evaluation and training

After installation, follow the instructions in DATASETS.md to setup the (many) datasets. Then check REPRODUCE.md to reproduce the results in the paper.

License

All our code under projects/Unidet/ is under Apache 2.0 license. The code from detectron2 follows the original Apache 2.0 license.

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@inproceedings{zhou2021simple,
  title={Simple multi-dataset detection},
  author={Zhou, Xingyi and Koltun, Vladlen and Kr{\"a}henb{\"u}hl, Philipp},
  booktitle={arXiv preprint arXiv:2102.13086},
  year={2021}
}
Owner
Xingyi Zhou
CS Ph.D. student at UT Austin.
Xingyi Zhou
Cross-Document Coreference Resolution

Cross-Document Coreference Resolution This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in ou

Arie Cattan 29 Nov 28, 2022
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
This repository contains part of the code used to make the images visible in the article "How does an AI Imagine the Universe?" published on Towards Data Science.

Generative Adversarial Network - Generating Universe This repository contains part of the code used to make the images visible in the article "How doe

Davide Coccomini 9 Dec 18, 2022
[ICCV 2021 Oral] Mining Latent Classes for Few-shot Segmentation

Mining Latent Classes for Few-shot Segmentation Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, Yang Gao. This codebase contains baseline of our paper Mini

Lihe Yang 66 Nov 29, 2022
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and

lan.nguyen2k 77 Jan 03, 2023
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

Dynamic Data Augmentation with Gating Networks This is an official PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

九州大学 ヒューマンインタフェース研究室 3 Oct 26, 2022
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

33 Mar 23, 2022
Multiband spectro-radiometric satellite image analysis with K-means cluster algorithm

Multi-band Spectro Radiomertric Image Analysis with K-means Cluster Algorithm Overview Multi-band Spectro Radiomertric images are images comprising of

Chibueze Henry 6 Mar 16, 2022
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
DC3: A Learning Method for Optimization with Hard Constraints

DC3: A learning method for optimization with hard constraints This repository is by Priya L. Donti, David Rolnick, and J. Zico Kolter and contains the

CMU Locus Lab 57 Dec 26, 2022
CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer

CycleTransGAN-EVC CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer Demo emotion CycleTransGAN CycleTransGAN Cycle

24 Dec 15, 2022
💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena

💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena.

Heidelberg-NLP 17 Nov 07, 2022
Pytorch implementation of the Variational Recurrent Neural Network (VRNN).

VariationalRecurrentNeuralNetwork Pytorch implementation of the Variational RNN (VRNN), from A Recurrent Latent Variable Model for Sequential Data. Th

emmanuel 251 Dec 17, 2022
Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022