WAGMA-SGD is a decentralized asynchronous SGD for distributed deep learning training based on model averaging.

Overview

WAGMA-SGD

WAGMA-SGD is a decentralized asynchronous SGD for distributed deep learning training based on model averaging. The key idea of WAGMA-SGD is to use a novel wait-avoiding group allreduce to average the models among processes. The synchronization is relaxed by making the collectives externally-triggerable, namely, a collective can be initiated without requiring that all the processes enter it. Thus, it can better handle the deep learning training with load imbalance. Since WAGMA-SGD only reduces the data within non-overlapping groups of process, it significantly improves the parallel scalability. WAGMA-SGD may bring staleness to the weights. However, the staleness is bounded. WAGMA-SGD is based on model averaging, rather than gradient averaging. Therefore, after the periodic synchronization is conducted, it guarantees a consistent model view amoung processes.

Demo

The wait-avoiding group allreduce operation is implemented in ./WAGMA-SGD-modules/fflib3/. To use it, simply configure and compile fflib3 as to an .so library by conducting cmake .. and make in the directory ./WAGMA-SGD-modules/fflib3/lib/. A script to run WAGMA-SGD on ResNet-50/ImageNet with SLURM job scheduler can be found here. Generally, to evaluate other neural network models with the customized optimizers (e.g., wait-avoiding group allreduce), one can simply wrap the default optimizer using the customized optimizers. See the example for ResNet-50 here.

For the deep learning tasks implemented in TensorFlow, we implemented custom C++ operators, in which we may call the wait-avoiding group allreduce operation or other communication operations (according to the specific parallel SGD algorithm) to average the models. Next, we register the C++ operators to TensorFlow, which can then be used to build the TensorFlow computational graph to implement the SGD algorithms. Similarly, for the deep learning tasks implemented in PyTorch, one can utilize pybind11 to call C++ operators in Python.

Publication

The work of WAGMA-SGD is pulished in TPDS'21. See the paper for details. To cite our work:

@ARTICLE{9271898,
  author={Li, Shigang and Ben-Nun, Tal and Nadiradze, Giorgi and Girolamo, Salvatore Di and Dryden, Nikoli and Alistarh, Dan and Hoefler, Torsten},
  journal={IEEE Transactions on Parallel and Distributed Systems},
  title={Breaking (Global) Barriers in Parallel Stochastic Optimization With Wait-Avoiding Group Averaging},
  year={2021},
  volume={32},
  number={7},
  pages={1725-1739},
  doi={10.1109/TPDS.2020.3040606}}

License

See LICENSE.

Owner
Shigang Li
Shigang Li
Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Priyansh Sharma 7 Nov 09, 2022
Banpei is a Python package of the anomaly detection.

Banpei Banpei is a Python package of the anomaly detection. Anomaly detection is a technique used to identify unusual patterns that do not conform to

Hirofumi Tsuruta 282 Jan 03, 2023
Visualize classified time series data with interactive Sankey plots in Google Earth Engine

sankee Visualize changes in classified time series data with interactive Sankey plots in Google Earth Engine Contents Description Installation Using P

Aaron Zuspan 76 Dec 15, 2022
Retrieve annotated intron sequences and classify them as minor (U12-type) or major (U2-type)

(intron I nterrogator and C lassifier) intronIC is a program that can be used to classify intron sequences as minor (U12-type) or major (U2-type), usi

Graham Larue 4 Jul 26, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Open source time series library for Python

PyFlux PyFlux is an open source time series library for Python. The library has a good array of modern time series models, as well as a flexible array

Ross Taylor 2k Jan 02, 2023
Tools for mathematical optimization region

Tools for mathematical optimization region

林景 15 Nov 30, 2022
Painless Machine Learning for python based on scikit-learn

PlainML Painless Machine Learning Library for python based on scikit-learn. Install pip install plainml Example from plainml import KnnModel, load_ir

1 Aug 06, 2022
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions

ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions, in particular, the posterior distributions of Bayesian models in

Computational Data Science Lab 182 Dec 31, 2022
Markov bot - A Writing bot based on Markov Chain for Data Structure Lab

基于马尔可夫链的写作机器人 前端 用html/css完成 Demo展示(已给出文本的相应展示) 用户提供相关的语料库后训练的成果 后端 要完成的几个接口 解析文

DysprosiumDy 9 May 05, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
PySpark ML Bank Churn Prediction

PySpark-Bank-Churn Surname: corresponds to the record (row) number and has no effect on the output. CreditScore: contains random values and has no eff

kemalgunay 2 Nov 11, 2021
A Tools that help Data Scientists and ML engineers train and deploy ML models.

Domino Research This repo contains projects under active development by the Domino R&D team. We build tools that help Data Scientists and ML engineers

Domino Data Lab 73 Oct 17, 2022
Tools for Optuna, MLflow and the integration of both.

HPOflow - Sphinx DOC Tools for Optuna, MLflow and the integration of both. Detailed documentation with examples can be found here: Sphinx DOC Table of

Telekom Open Source Software 17 Nov 20, 2022
Python package for stacking (machine learning technique)

vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa

Igor Ivanov 671 Dec 25, 2022
Python Machine Learning Jupyter Notebooks (ML website)

Python Machine Learning Jupyter Notebooks (ML website) Dr. Tirthajyoti Sarkar, Fremont, California (Please feel free to connect on LinkedIn here) Also

Tirthajyoti Sarkar 2.6k Jan 03, 2023
Fundamentals of Machine Learning

Fundamentals-of-Machine-Learning This repository introduces the basics of machine learning algorithms for preprocessing, regression and classification

Happy N. Monday 3 Feb 15, 2022
Simple structured learning framework for python

PyStruct PyStruct aims at being an easy-to-use structured learning and prediction library. Currently it implements only max-margin methods and a perce

pystruct 666 Jan 03, 2023
Python module for data science and machine learning users.

dsnk-distributions package dsnk distribution is a Python module for data science and machine learning that was created with the goal of reducing calcu

Emmanuel ASIFIWE 1 Nov 23, 2021
This is the code repository for LRM Stochastic watershed model.

LRM-Squannacook Input data for generating stochastic streamflows are observed and simulated timeseries of streamflow. their format needs to be CSV wit

1 Feb 14, 2022