Tools for Optuna, MLflow and the integration of both.

Overview

HPOflow - Sphinx DOC

DOC MIT License Contributor Covenant Python Version pypi
pytest status Static Code Checks status Build & Deploy Doc GitHub issues

Tools for Optuna, MLflow and the integration of both.

Detailed documentation with examples can be found here: Sphinx DOC

Table of Contents

Maintainers

One Conversation
This project is maintained by the One Conversation team of Deutsche Telekom AG.

The main components are:

Installation

HPOflow is available at the Python Package Index (PyPI). It can be installed with pip:

$ pip install hpoflow

Some additional dependencies might be necessary.

To use hpoflow.optuna_mlflow.OptunaMLflow:

$ pip install mlflow GitPython

To use hpoflow.optuna_transformers.OptunaMLflowCallback:

$ pip install mlflow GitPython transformers

To install all optional dependencies use:

$ pip install hpoflow[optional]

Support and Feedback

The following channels are available for discussions, feedback, and support requests:

Reporting Security Vulnerabilities

This project is built with security and data privacy in mind to ensure your data is safe. We are grateful for security researchers and users reporting a vulnerability to us, first. To ensure that your request is handled in a timely manner and non-disclosure of vulnerabilities can be assured, please follow the below guideline.

Please do not report security vulnerabilities directly on GitHub. GitHub Issues can be publicly seen and therefore would result in a direct disclosure.

Please address questions about data privacy, security concepts, and other media requests to the [email protected] mailbox.

Contribution

Our commitment to open source means that we are enabling - in fact encouraging - all interested parties to contribute and become part of our developer community.

Contribution and feedback is encouraged and always welcome. For more information about how to contribute, as well as additional contribution information, see our Contribution Guidelines.

Code of Conduct

This project has adopted the Contributor Covenant as our code of conduct. Please see the details in our Contributor Covenant Code of Conduct. All contributors must abide by the code of conduct.

Licensing

Copyright (c) 2021 Philip May, Deutsche Telekom AG
Copyright (c) 2021 Philip May
Copyright (c) 2021 Timothy Wolff-Piggott

Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License by reviewing the file LICENSE in the repository.

Comments
  • review README.md and CONTRIBUTING.md

    review README.md and CONTRIBUTING.md

    Review README.md and CONTRIBUTING.md

    • is there something missing? maybe compare with optuna and transformers
    • spelling
    • idiomatic english
    • consistency
    • correctness
    • links ok?
    • ...

    PS: The real documentation is still missing and a know issue.

    opened by PhilipMay 12
  • add typing in optuna_transformers

    add typing in optuna_transformers

    @twolffpiggott can you please tell me the type of this?

    https://github.com/telekom/HPOflow/blob/e2b0943218af419a79ce95e60b67c9a4c2477349/hpoflow/optuna_transformers.py#L47

    opened by PhilipMay 6
  • add `transformers.py`

    add `transformers.py`

    @twolffpiggott should we add this here or to an other project we open source?

    https://github.com/PhilipMay/mltb/blob/master/mltb/integration/transformers.py

    enhancement 
    opened by PhilipMay 6
  • Create Sphinx documentation page

    Create Sphinx documentation page

    • [x] setup
    • [x] make GH action
    • [x] setup page
    • [x] change styling to telekom style
    • switch to MD
    • [x] add more content
    • [x] link from README to page
    • [x] link from pypi to GH page
    • [x] add impressum
    • [x] remove strange mouse over image effect
    • add version info
    documentation 
    opened by PhilipMay 4
  • Problems with direct `_imports.check()` call

    Problems with direct `_imports.check()` call

    When the __init__.py imports OMLflowCallback the optuna_transformers.py script is executed. That executes the _imports.check() call which then throws an exception if transformers or mlflow is not installed. But that should be avoided.

    See here: https://github.com/telekom/HPOflow/blob/d1cce5cbc2a84634d1484a053286000dda05b681/hpoflow/optuna_transformers.py#L11-L17

    The solution would be to put the _imports.check() call into the constructor. But that is not possible because OMLflowCallback inherits from transformers.

    The only solution I have is to put OMLflowCallback into an factory function that creates an OMLflowCallback and does the _imports.check() in there.

    @twolffpiggott what do you think?

    bug 
    opened by PhilipMay 3
  • Flake8 ignore list for Black compatibility

    Flake8 ignore list for Black compatibility

    Flake8 raises a warning for "E203" when it encounters a Black decision to insert whitespace before : in slicing syntax.

    Black's behaviour is more correct here, so my suggestion is to add "E203" to the flake8 config ignore list.

    i.e. in setup.cfg:

    [flake8]
    ...
    extend-ignore = E203
    opened by twolffpiggott 3
  • Simple Example?

    Simple Example?

    I don't understand how to use this package. Could you provide a basic example? I don't understand the import_structure and how it relates to importing the modules? Thanks

    opened by jmrichardson 2
  • WIP prefix in contrib file

    WIP prefix in contrib file

    Should this

    Create Work In Progress [WIP] pull requests only if you need clarification or an explicit review before you can continue your work item.

    be more like this

    Add a [WIP] prefix on your pull request name if you need clarification or an explicit review before you can continue your work item.

    documentation 
    opened by PhilipMay 2
Releases(0.1.4)
Owner
Telekom Open Source Software
published by Deutsche Telekom AG and partner companies
Telekom Open Source Software
ArviZ is a Python package for exploratory analysis of Bayesian models

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics

ArviZ 1.3k Jan 05, 2023
MiniTorch - a diy teaching library for machine learning engineers

This repo is the full student code for minitorch. It is designed as a single repo that can be completed part by part following the guide book. It uses

1.1k Jan 07, 2023
It is a forest of random projection trees

rpforest rpforest is a Python library for approximate nearest neighbours search: finding points in a high-dimensional space that are close to a given

Lyst 211 Dec 29, 2022
Dual Adaptive Sampling for Machine Learning Interatomic potential.

DAS Dual Adaptive Sampling for Machine Learning Interatomic potential. How to cite If you use this code in your research, please cite this using: Hong

6 Jul 06, 2022
Python package for stacking (machine learning technique)

vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa

Igor Ivanov 671 Dec 25, 2022
Evaluate on three different ML model for feature selection using Breast cancer data.

Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.

Tarek idrees 1 Mar 17, 2022
Python 3.6+ toolbox for submitting jobs to Slurm

Submit it! What is submitit? Submitit is a lightweight tool for submitting Python functions for computation within a Slurm cluster. It basically wraps

Facebook Incubator 768 Jan 03, 2023
All-in-one web-based development environment for machine learning

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

3 Feb 03, 2021
A Python implementation of the Robotics Toolbox for MATLAB

Robotics Toolbox for Python A Python implementation of the Robotics Toolbox for MATLAB® GitHub repository Documentation Wiki (examples and details) Sy

Peter Corke 1.2k Jan 07, 2023
Python/Sage Tool for deriving Scattering Matrices for WDF R-Adaptors

R-Solver A Python tools for deriving R-Type adaptors for Wave Digital Filters. This code is not quite production-ready. If you are interested in contr

8 Sep 19, 2022
A simple guide to MLOps through ZenML and its various integrations.

ZenBytes Join our Slack Community and become part of the ZenML family Give the main ZenML repo a GitHub star to show your love ZenBytes is a series of

ZenML 127 Dec 27, 2022
Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

1 Jan 01, 2022
scikit-learn is a python module for machine learning built on top of numpy / scipy

About scikit-learn is a python module for machine learning built on top of numpy / scipy. The purpose of the scikit-learn-tutorial subproject is to le

Gael Varoquaux 122 Dec 12, 2022
Simplify stop motion animation with machine learning.

Simplify stop motion animation with machine learning.

Nick Bild 25 Sep 15, 2022
Machine-Learning with python (jupyter)

Machine-Learning with python (jupyter) 머신러닝 야학 작심 10일과 쥬피터 노트북 기반 데이터 사이언스 시작 들어가기전 https://nbviewer.org/ 페이지를 통해서 쥬피터 노트북 내용을 볼 수 있다. 위 페이지에서 현재 레포 기

HyeonWoo Jeong 1 Jan 23, 2022
Machine Learning for RC Cars

Suiron Machine Learning for RC Cars Prediction visualization (green = actual, blue = prediction) Click the video below to see it in action! Dependenci

Kendrick Tan 706 Jan 02, 2023
Uplift modeling and causal inference with machine learning algorithms

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Uber Open Source 3.7k Jan 07, 2023
Decision tree is the most powerful and popular tool for classification and prediction

Diabetes Prediction Using Decision Tree Introduction Decision tree is the most powerful and popular tool for classification and prediction. A Decision

Arjun U 1 Jan 23, 2022
Iris-Heroku - Putting a Machine Learning Model into Production with Flask and Heroku

Puesta en Producción de un modelo de aprendizaje automático con Flask y Heroku L

Jesùs Guillen 1 Jun 03, 2022
The Fuzzy Labs guide to the universe of open source MLOps

Open Source MLOps This is the Fuzzy Labs guide to the universe of free and open source MLOps tools. Contents What is MLOps, anyway? Data version contr

Fuzzy Labs 352 Dec 29, 2022