Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Overview

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

This repository is the official implementation of "Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech".

multi-task learning meta learning

Meta-TTS

image

Requirements

This is how I build my environment, which is not exactly needed to be the same:

  • Sign up for Comet.ml, find out your workspace and API key via www.comet.ml/api/my/settings and fill them in config/comet.py. Comet logger is used throughout train/val/test stages.
    • Check my training logs here.
  • [Optional] Install pyenv for Python version control, change to Python 3.8.6.
# After download and install pyenv:
pyenv install 3.8.6
pyenv local 3.8.6
  • [Optional] Install pyenv-virtualenv as a plugin of pyenv for clean virtual environment.
# After install pyenv-virtualenv
pyenv virtualenv meta-tts
pyenv activate meta-tts
# Install Cython first:
pip install cython

# Then install learn2learn from source:
git clone https://github.com/learnables/learn2learn.git
cd learn2learn
pip install -e .
  • Install requirements:
pip install -r requirements.txt

Proprocessing

First, download LibriTTS and VCTK, then change the paths in config/LibriTTS/preprocess.yaml and config/VCTK/preprocess.yaml, then run

python3 prepare_align.py config/LibriTTS/preprocess.yaml
python3 prepare_align.py config/VCTK/preprocess.yaml

for some preparations.

Alignments of LibriTTS is provided here, and the alignments of VCTK is provided here. You have to unzip the files into preprocessed_data/LibriTTS/TextGrid/ and preprocessed_data/VCTK/TextGrid/.

Then run the preprocessing script:

python3 preprocess.py config/LibriTTS/preprocess.yaml

# Copy stats from LibriTTS to VCTK to keep pitch/energy normalization the same shift and bias.
cp preprocessed_data/LibriTTS/stats.json preprocessed_data/VCTK/

python3 preprocess.py config/VCTK/preprocess.yaml

Training

To train the models in the paper, run this command:

python3 main.py -s train \
                -p config/preprocess/<corpus>.yaml \
                -m config/model/base.yaml \
                -t config/train/base.yaml config/train/<corpus>.yaml \
                -a config/algorithm/<algorithm>.yaml

To reproduce, please use 8 V100 GPUs for meta models, and 1 V100 GPU for baseline models, or else you might need to tune gradient accumulation step (grad_acc_step) setting in config/train/base.yaml to get the correct meta batch size. Note that each GPU has its own random seed, so even the meta batch size is the same, different number of GPUs is equivalent to different random seed.

After training, you can find your checkpoints under output/ckpt/ / / /checkpoints/ , where the project name is set in config/comet.py.

To inference the models, run:

python3 main.py -s test \
                -p config/preprocess/<corpus>.yaml \
                -m config/model/base.yaml \
                -t config/train/base.yaml config/train/<corpus>.yaml \
                -a config/algorithm/<algorithm>.yaml \
                -e <experiment_key> -c <checkpoint_file_name>

and the results would be under output/result/ / / / .

Evaluation

Note: The evaluation code is not well-refactored yet.

cd evaluation/ and check README.md

Pre-trained Models

Note: The checkpoints are with older version, might not capatiable with the current code. We would fix the problem in the future.

Since our codes are using Comet logger, you might need to create a dummy experiment by running:

from comet_ml import Experiment
experiment = Experiment()

then put the checkpoint files under output/ckpt/LibriTTS/ / /checkpoints/ .

You can download pretrained models here.

Results

Corpus LibriTTS VCTK
Speaker Similarity
Speaker Verification

Synthesized Speech Detection

Owner
Sung-Feng Huang
A Ph.D. student at National Taiwan University. Main research includes unsupervised learning, meta learning, speech separation, ASR, and some NLP.
Sung-Feng Huang
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022
💊 A 3D Generative Model for Structure-Based Drug Design (NeurIPS 2021)

A 3D Generative Model for Structure-Based Drug Design Coming soon... Citation @inproceedings{luo2021sbdd, title={A 3D Generative Model for Structu

Shitong Luo 118 Jan 05, 2023
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
Imagededup - 😎 Finding duplicate images made easy

imagededup is a python package that simplifies the task of finding exact and near duplicates in an image collection.

idealo 4.3k Jan 07, 2023
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 18, 2021
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022
Generative Flow Networks for Discrete Probabilistic Modeling

Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo

Narsil-Dinghuai Zhang 51 Dec 20, 2022
🌎 The Modern Declarative Data Flow Framework for the AI Empowered Generation.

🌎 JSONClasses JSONClasses is a declarative data flow pipeline and data graph framework. Official Website: https://www.jsonclasses.com Official Docume

Fillmula Inc. 53 Dec 09, 2022
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.

Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us

Michael Smith 32 Dec 20, 2022
OverFeat is a Convolutional Network-based image classifier and feature extractor.

OverFeat OverFeat is a Convolutional Network-based image classifier and feature extractor. OverFeat was trained on the ImageNet dataset and participat

593 Dec 08, 2022
This is a Python Module For Encryption, Hashing And Other stuff

EnroCrypt This is a Python Module For Encryption, Hashing And Other Basic Stuff You Need, With Secure Encryption And Strong Salted Hashing You Can Do

5 Sep 15, 2022
Taming Transformers for High-Resolution Image Synthesis

Taming Transformers for High-Resolution Image Synthesis CVPR 2021 (Oral) Taming Transformers for High-Resolution Image Synthesis Patrick Esser*, Robin

CompVis Heidelberg 3.5k Jan 03, 2023
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE: A Benchmark Suite for Data-centric NLP You can get the english version of README. 以数据为中心的AI测评(DataCLUE) 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE

CLUE benchmark 135 Dec 22, 2022
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022