[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

Overview

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition

Paper | Model Checkpoint

  • This is the official PyTorch implementation of Collaborative Transformers for Grounded Situation Recognition.
  • CoFormer (Collaborative Glance-Gaze TransFormer) achieves state-of-the-art accuracy in every evaluation metric on the SWiG dataset.
  • This repository contains instructions, code and model checkpoint.

prediction_results


Overview

Grounded situation recognition is the task of predicting the main activity, entities playing certain roles within the activity, and bounding-box groundings of the entities in the given image. To effectively deal with this challenging task, we introduce a novel approach where the two processes for activity classification and entity estimation are interactive and complementary. To implement this idea, we propose Collaborative Glance-Gaze TransFormer (CoFormer) that consists of two modules: Glance transformer for activity classification and Gaze transformer for entity estimation. Glance transformer predicts the main activity with the help of Gaze transformer that analyzes entities and their relations, while Gaze transformer estimates the grounded entities by focusing only on the entities relevant to the activity predicted by Glance transformer. Our CoFormer achieves the state of the art in all evaluation metrics on the SWiG dataset.

overall_architecture Following conventions in the literature, we call an activity verb and an entity noun. Glance transformer predicts a verb with the help of Gaze-Step1 transformer that analyzes nouns and their relations by leveraging role features, while Gaze-Step2 transformer estimates the grounded nouns for the roles associated with the predicted verb. Prediction results are obtained by feed forward networks (FFNs).

Environment Setup

We provide instructions for environment setup.

# Clone this repository and navigate into the repository
git clone https://github.com/jhcho99/CoFormer.git    
cd CoFormer                                          

# Create a conda environment, activate the environment and install PyTorch via conda
conda create --name CoFormer python=3.9              
conda activate CoFormer                             
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=11.1 -c pytorch -c conda-forge 

# Install requirements via pip
pip install -r requirements.txt                   

SWiG Dataset

Annotations are given in JSON format, and annotation files are under "SWiG/SWiG_jsons/" directory. Images can be downloaded here. Please download the images and store them in "SWiG/images_512/" directory.

In the SWiG dataset, each image is associated with Verb, Frame and Groundings.

A) Verb: each image is paired with a verb. In the annotation file, "verb" denotes the salient action for an image.

B) Frame: a frame denotes the set of semantic roles for a verb. For example, the frame for verb "Drinking" denotes the set of semantic roles "Agent", "Liquid", "Container" and "Place". In the annotation file, "frames" show the set of semantic roles for a verb, and noun annotations for each role. There are three noun annotations for each role, which are given by three different annotators.

C) Groundings: each grounding is described in [x1, y1, x2, y2] format. In the annotation file, "bb" denotes bounding-box groundings for roles. Note that nouns can be labeled without groundings, e.g., in the case of occluded objects. When there is no grounding for a role, [-1, -1, -1, -1] is given.

# an example of annotation for an image

"drinking_235.jpg": {
    "verb": "drinking",
    "height": 512, 
    "width": 657, 
    "bb": {"agent": [0, 1, 654, 512], 
           "liquid": [128, 273, 293, 382], 
           "container": [111, 189, 324, 408],
           "place": [-1, -1, -1, -1]},
    "frames": [{"agent": "n10787470", "liquid": "n14845743", "container": "n03438257", "place": ""}, 
               {"agent": "n10129825", "liquid": "n14845743", "container": "n03438257", "place": ""}, 
               {"agent": "n10787470", "liquid": "n14845743", "container": "n03438257", "place": ""}]
    }

In imsitu_space.json file, there is additional information for verb and noun.

# an example of additional verb information

"drinking": {
    "framenet": "Ingestion", 
    "abstract": "the AGENT drinks a LIQUID from a CONTAINER at a PLACE", 
    "def": "take (a liquid) into the mouth and swallow", 
    "order": ["agent", "liquid", "container", "place"], 
    "roles": {"agent": {"framenet": "ingestor", "def": "The entity doing the drink action"},
              "liquid": {"framenet": "ingestibles", "def": "The entity that the agent is drinking"}
              "container": {"framenet": "source", "def": "The container in which the liquid is in"}        
              "place": {"framenet": "place", "def": "The location where the drink event is happening"}}
    }
# an example of additional noun information

"n14845743": {
    "gloss": ["water", "H2O"], 
    "def": "binary compound that occurs at room temperature as a clear colorless odorless tasteless liquid; freezes into ice below 0 degrees centigrade and boils above 100 degrees centigrade; widely used as a solvent"
    }

Additional Details

  • All images should be under "SWiG/images_512/" directory.
  • train.json file is for train set.
  • dev.json file is for development set.
  • test.json file is for test set.

Training

To train CoFormer on a single node with 4 GPUs for 40 epochs, run:

python -m torch.distributed.launch --nproc_per_node=4 --use_env main.py \
           --backbone resnet50 --batch_size 16 --dataset_file swig --epochs 40 \
           --num_workers 4 --num_glance_enc_layers 3 --num_gaze_s1_dec_layers 3 \
           --num_gaze_s1_enc_layers 3 --num_gaze_s2_dec_layers 3 --dropout 0.15 --hidden_dim 512 \
           --output_dir CoFormer

To train CoFormer on a Slurm cluster with submitit using 4 RTX 3090 GPUs for 40 epochs, run:

python run_with_submitit.py --ngpus 4 --nodes 1 --job_dir CoFormer \
        --backbone resnet50 --batch_size 16 --dataset_file swig --epochs 40 \
        --num_workers 4 --num_glance_enc_layers 3 --num_gaze_s1_dec_layers 3 \
        --num_gaze_s1_enc_layers 3 --num_gaze_s2_dec_layers 3 --dropout 0.15 --hidden_dim 512 \
        --partition rtx3090
  • A single epoch takes about 45 minutes. Training CoFormer for 40 epochs takes around 30 hours on a single machine with 4 RTX 3090 GPUs.
  • We use AdamW optimizer with learning rate 10-4 (10-5 for backbone), weight decay 10-4 and β = (0.9, 0.999).
    • Those learning rates are divided by 10 at epoch 30.
  • Random Color Jittering, Random Gray Scaling, Random Scaling and Random Horizontal Flipping are used for augmentation.

Evaluation

To evaluate CoFormer on the dev set with the saved model, run:

python main.py --saved_model CoFormer_checkpoint.pth --output_dir CoFormer --dev

To evaluate CoFormer on the test set with the saved model, run:

python main.py --saved_model CoFormer_checkpoint.pth --output_dir CoFormer --test
  • Model checkpoint can be downloaded here.

Inference

To run an inference on a custom image, run:

python inference.py --image_path inference/filename.jpg \
                    --saved_model CoFormer_checkpoint.pth \
                    --output_dir inference

Results

We provide several experimental results.

quantitative qualitative_1 qualitative_2

Our Previous Work

We proposed GSRTR for this task using a simple transformer encoder-decoder architecture:

Acknowledgements

Our code is modified and adapted from these amazing repositories:

Contact

Junhyeong Cho ([email protected])

Citation

If you find our work useful for your research, please cite our paper:

@InProceedings{cho2022CoFormer,
    title={Collaborative Transformers for Grounded Situation Recognition},
    author={Junhyeong Cho and Youngseok Yoon and Suha Kwak},
    booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2022}
}

License

CoFormer is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Owner
Junhyeong Cho
Studied @ POSTECH, Stanford, UIUC, UC Berkeley
Junhyeong Cho
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021) This repo contains the implementation of our state-of-the-art fewshot ob

233 Dec 29, 2022
MPViT:Multi-Path Vision Transformer for Dense Prediction

MPViT : Multi-Path Vision Transformer for Dense Prediction This repository inlcu

Youngwan Lee 272 Dec 20, 2022
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0

32 Nov 27, 2022
Pytorch Implementation for Dilated Continuous Random Field

DilatedCRF Pytorch implementation for fully-learnable DilatedCRF. If you find my work helpful, please consider our paper: @article{Mo2022dilatedcrf,

DunnoCoding_Plus 3 Nov 13, 2022
Constructing Neural Network-Based Models for Simulating Dynamical Systems

Constructing Neural Network-Based Models for Simulating Dynamical Systems Note this repo is work in progress prior to reviewing This is a companion re

Christian Møldrup Legaard 21 Nov 25, 2022
Low Complexity Channel estimation with Neural Network Solutions

Interpolation-ResNet Invited paper for WSA 2021, called 'Low Complexity Channel estimation with Neural Network Solutions'. Low complexity residual con

Dianxin 10 Dec 10, 2022
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
Code for Recurrent Mask Refinement for Few-Shot Medical Image Segmentation (ICCV 2021).

Recurrent Mask Refinement for Few-Shot Medical Image Segmentation Steps Install any missing packages using pip or conda Preprocess each dataset using

XIE LAB @ UCI 39 Dec 08, 2022
Towards Implicit Text-Guided 3D Shape Generation (CVPR2022)

Towards Implicit Text-Guided 3D Shape Generation Towards Implicit Text-Guided 3D Shape Generation (CVPR2022) Code for the paper [Towards Implicit Text

55 Dec 16, 2022
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
[CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation

RCIL [CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation Chang-Bin Zhang1, Jia-Wen Xiao1, Xialei Liu1, Ying-Cong Chen2

Chang-Bin Zhang 71 Dec 28, 2022
Nonnegative spatial factorization for multivariate count data

Nonnegative spatial factorization for multivariate count data This repository contains supporting code to facilitate reproducible analysis. For detail

Will Townes 24 Dec 19, 2022
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Jan 03, 2023
Table-Extractor 表格抽取

(t)able-(ex)tractor 本项目旨在实现pdf表格抽取。 Models 版面分析模块(Yolo) 表格结构抽取(ResNet + Transformer) 文字识别模块(CRNN + CTC Loss) Acknowledgements TableMaster attention-i

2 Jan 15, 2022
We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will make a program to Crack Any Password Using Python. Show some ❤️ by starring this repository!

Crack Any Password Using Python We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will

Ananya Chatterjee 11 Dec 03, 2022
A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib Инструкция по использованию этой библиотеки Запуск всех файлов осуществлять из консоли. GoogleCrawl_to_Dataset.py Это ск

Egor Orel 1 Dec 10, 2022
(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

NeRF--: Neural Radiance Fields Without Known Camera Parameters Project Page | Arxiv | Colab Notebook | Data Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min

Active Vision Laboratory 411 Dec 26, 2022