TalkNet: Audio-visual active speaker detection Model

Overview

Is someone talking? TalkNet: Audio-visual active speaker detection Model

This repository contains the code for our ACM MM 2021 paper, TalkNet, an active speaker detection model to detect 'whether the face in the screen is speaking or not?'. [Paper] [Video_English] [Video_Chinese].

overall.png

  • Awesome ASD: Papers about active speaker detection in last years.

  • TalkNet in AVA-Activespeaker dataset: The code to preprocess the AVA-ActiveSpeaker dataset, train TalkNet in AVA train set and evaluate it in AVA val/test set.

  • TalkNet in TalkSet and Columbia ASD dataset: The code to generate TalkSet, an ASD dataset in the wild, based on VoxCeleb2 and LRS3, train TalkNet in TalkSet and evaluate it in Columnbia ASD dataset.

  • An ASD Demo with pretrained TalkNet model: An end-to-end script to detect and mark the speaking face by the pretrained TalkNet model.


Dependencies

Start from building the environment

conda create -n TalkNet python=3.7.9 anaconda
conda activate TalkNet
pip install -r requirement.txt

Start from the existing environment

pip install -r requirement.txt

TalkNet in AVA-Activespeaker dataset

Data preparation

The following script can be used to download and prepare the AVA dataset for training.

python trainTalkNet.py --dataPathAVA AVADataPath --download 

AVADataPath is the folder you want to save the AVA dataset and its preprocessing outputs, the details can be found in here . Please read them carefully.

Training

Then you can train TalkNet in AVA end-to-end by using:

python trainTalkNet.py --dataPathAVA AVADataPath

exps/exps1/score.txt: output score file, exps/exp1/model/model_00xx.model: trained model, exps/exps1/val_res.csv: prediction for val set.

Pretrained model

Our pretrained model performs mAP: 92.3 in validation set, you can check it by using:

python trainTalkNet.py --dataPathAVA AVADataPath --evaluation

The pretrained model will automaticly be downloaded into TalkNet_ASD/pretrain_AVA.model. It performs mAP: 90.8 in the testing set.


TalkNet in TalkSet and Columbia ASD dataset

Data preparation

We find that it is challenge to apply the model we trained in AVA for the videos not in AVA (Reason is here, Q1). So we build TalkSet, an active speaker detection dataset in the wild, based on VoxCeleb2 and LRS3.

We do not plan to upload this dataset since we just modify it, instead of building it. In TalkSet folder we provide these .txt files to describe which files we used to generate the TalkSet and their ASD labels. You can generate this TalkSet if you are interested to train an ASD model in the wild.

Also, we have provided our pretrained TalkNet model in TalkSet. You can evaluate it in Columbia ASD dataset or other raw videos in the wild.

Usage

A pretrain model in TalkSet will be download into TalkNet_ASD/pretrain_TalkSet.model when using the following script:

python demoTalkNet.py --evalCol --colSavePath colDataPath

Also, Columnbia ASD dataset and the labels will be downloaded into colDataPath. Finally you can get the following F1 result.

Name Bell Boll Lieb Long Sick Avg.
F1 98.1 88.8 98.7 98.0 97.7 96.3

(This result is different from that in our paper because we train the model again, while the avg. F1 is very similar)


An ASD Demo with pretrained TalkNet model

Data preparation

We build an end-to-end script to detect and extract the active speaker from the raw video by our pretrain model in TalkSet.

You can put the raw video (.mp4 and .avi are both fine) into the demo folder, such as 001.mp4.

Usage

python demoTalkNet.py --videoName 001

A pretrain model in TalkSet will be downloaded into TalkNet_ASD/pretrain_TalkSet.model. The structure of the output reults can be found in here.

You can get the output video demo/001/pyavi/video_out.avi, which has marked the active speaker by green box and non-active speaker by red box.


Citation

Please cite the following if our paper or code is helpful to your research.

@article{tao2021TalkNet,
  title={Is Someone Speaking? Exploring Long-term Temporal Features for Audio-visual Active Speaker Detection},
  author={Ruijie Tao, Zexu Pan, Rohan Kumar Das, Xinyuan Qian, Mike Zheng Shou, Haizhou Li},
  journal={ACM Multimedia (MM)},
  year={2021}
}

I have summaried some potential FAQs. This is my first open-source work, please let me know if I can future improve in this repositories. Thanks for your support!

Owner
NUS ECE PhD student
Différents programmes créant une interface graphique a l'aide de Tkinter pour simplifier la vie des étudiants.

GP211-Grand-Projet Ce repertoire contient tout les programmes nécessaires au bon fonctionnement de notre projet-logiciel. Cette interface graphique es

1 Dec 21, 2021
Weird Sort-and-Compress Thing

Weird Sort-and-Compress Thing A weird integer sorting + compression algorithm inspired by a conversation with Luthingx (it probably already exists by

Douglas 1 Jan 03, 2022
RecipeReduce: Simplified Recipe Processing for Lazy Programmers

RecipeReduce This repo will help you figure out the amount of ingredients to buy for a certain number of meals with selected recipes. RecipeReduce Get

Qibin Chen 9 Apr 22, 2022
Ceaser-Cipher - The Caesar Cipher technique is one of the earliest and simplest method of encryption technique

Ceaser-Cipher The Caesar Cipher technique is one of the earliest and simplest me

Lateefah Ajadi 2 May 12, 2022
This is a simple item2vec implementation using gensim for recbole

recbole-item2vec-model This is a simple item2vec implementation using gensim for recbole( https://recbole.io ) Usage When you want to run experiment f

Yusuke Fukasawa 2 Oct 06, 2022
A combination of autoregressors and autoencoders using XLNet for sentiment analysis

A combination of autoregressors and autoencoders using XLNet for sentiment analysis Abstract In this paper sentiment analysis has been performed in or

James Zaridis 2 Nov 20, 2021
This is an incredibly powerful calculator that is capable of many useful day-to-day functions.

Description 💻 This is an incredibly powerful calculator that is capable of many useful day-to-day functions. Such functions include solving basic ari

Jordan Leich 37 Nov 19, 2022
Code for the paper "Are Sixteen Heads Really Better than One?"

Are Sixteen Heads Really Better than One? This repository contains code to reproduce the experiments in our paper Are Sixteen Heads Really Better than

Paul Michel 143 Dec 14, 2022
Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech

epub2audiobook Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech Input examples qual a pasta do seu

7 Aug 25, 2022
✨Fast Coreference Resolution in spaCy with Neural Networks

✨ NeuralCoref 4.0: Coreference Resolution in spaCy with Neural Networks. NeuralCoref is a pipeline extension for spaCy 2.1+ which annotates and resolv

Hugging Face 2.6k Jan 04, 2023
Deep learning for NLP crash course at ABBYY.

Deep NLP Course at ABBYY Deep learning for NLP crash course at ABBYY. Suggested textbook: Neural Network Methods in Natural Language Processing by Yoa

Dan Anastasyev 597 Dec 18, 2022
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
A repo for materials relating to the tutorial of CS-332 NLP

CS-332-NLP A repo for materials relating to the tutorial of CS-332 NLP Contents Tutorial 1: Introduction Corpus Regular expression Tokenization Tutori

Alok singh 9 Feb 15, 2022
Training open neural machine translation models

Train Opus-MT models This package includes scripts for training NMT models using MarianNMT and OPUS data for OPUS-MT. More details are given in the Ma

Language Technology at the University of Helsinki 167 Jan 03, 2023
Python library for interactive topic model visualization. Port of the R LDAvis package.

pyLDAvis Python library for interactive topic model visualization. This is a port of the fabulous R package by Carson Sievert and Kenny Shirley. pyLDA

Ben Mabey 1.7k Dec 20, 2022
The aim of this task is to predict someone's English proficiency based on a text input.

English_proficiency_prediction_NLP The aim of this task is to predict someone's English proficiency based on a text input. Using the The NICT JLE Corp

1 Dec 13, 2021
Kestrel Threat Hunting Language

Kestrel Threat Hunting Language What is Kestrel? Why we need it? How to hunt with XDR support? What is the science behind it? You can find all the ans

Open Cybersecurity Alliance 201 Dec 16, 2022
运小筹公众号是致力于分享运筹优化(LP、MIP、NLP、随机规划、鲁棒优化)、凸优化、强化学习等研究领域的内容以及涉及到的算法的代码实现。

OlittleRer 运小筹公众号是致力于分享运筹优化(LP、MIP、NLP、随机规划、鲁棒优化)、凸优化、强化学习等研究领域的内容以及涉及到的算法的代码实现。编程语言和工具包括Java、Python、Matlab、CPLEX、Gurobi、SCIP 等。 关注我们: 运筹小公众号 有问题可以直接在

运小筹 151 Dec 30, 2022
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17.1k Jan 09, 2023
LegalNLP - Natural Language Processing Methods for the Brazilian Legal Language

LegalNLP - Natural Language Processing Methods for the Brazilian Legal Language ⚖️ The library of Natural Language Processing for Brazilian legal lang

Felipe Maia Polo 125 Dec 20, 2022