TalkNet: Audio-visual active speaker detection Model

Overview

Is someone talking? TalkNet: Audio-visual active speaker detection Model

This repository contains the code for our ACM MM 2021 paper, TalkNet, an active speaker detection model to detect 'whether the face in the screen is speaking or not?'. [Paper] [Video_English] [Video_Chinese].

overall.png

  • Awesome ASD: Papers about active speaker detection in last years.

  • TalkNet in AVA-Activespeaker dataset: The code to preprocess the AVA-ActiveSpeaker dataset, train TalkNet in AVA train set and evaluate it in AVA val/test set.

  • TalkNet in TalkSet and Columbia ASD dataset: The code to generate TalkSet, an ASD dataset in the wild, based on VoxCeleb2 and LRS3, train TalkNet in TalkSet and evaluate it in Columnbia ASD dataset.

  • An ASD Demo with pretrained TalkNet model: An end-to-end script to detect and mark the speaking face by the pretrained TalkNet model.


Dependencies

Start from building the environment

conda create -n TalkNet python=3.7.9 anaconda
conda activate TalkNet
pip install -r requirement.txt

Start from the existing environment

pip install -r requirement.txt

TalkNet in AVA-Activespeaker dataset

Data preparation

The following script can be used to download and prepare the AVA dataset for training.

python trainTalkNet.py --dataPathAVA AVADataPath --download 

AVADataPath is the folder you want to save the AVA dataset and its preprocessing outputs, the details can be found in here . Please read them carefully.

Training

Then you can train TalkNet in AVA end-to-end by using:

python trainTalkNet.py --dataPathAVA AVADataPath

exps/exps1/score.txt: output score file, exps/exp1/model/model_00xx.model: trained model, exps/exps1/val_res.csv: prediction for val set.

Pretrained model

Our pretrained model performs mAP: 92.3 in validation set, you can check it by using:

python trainTalkNet.py --dataPathAVA AVADataPath --evaluation

The pretrained model will automaticly be downloaded into TalkNet_ASD/pretrain_AVA.model. It performs mAP: 90.8 in the testing set.


TalkNet in TalkSet and Columbia ASD dataset

Data preparation

We find that it is challenge to apply the model we trained in AVA for the videos not in AVA (Reason is here, Q1). So we build TalkSet, an active speaker detection dataset in the wild, based on VoxCeleb2 and LRS3.

We do not plan to upload this dataset since we just modify it, instead of building it. In TalkSet folder we provide these .txt files to describe which files we used to generate the TalkSet and their ASD labels. You can generate this TalkSet if you are interested to train an ASD model in the wild.

Also, we have provided our pretrained TalkNet model in TalkSet. You can evaluate it in Columbia ASD dataset or other raw videos in the wild.

Usage

A pretrain model in TalkSet will be download into TalkNet_ASD/pretrain_TalkSet.model when using the following script:

python demoTalkNet.py --evalCol --colSavePath colDataPath

Also, Columnbia ASD dataset and the labels will be downloaded into colDataPath. Finally you can get the following F1 result.

Name Bell Boll Lieb Long Sick Avg.
F1 98.1 88.8 98.7 98.0 97.7 96.3

(This result is different from that in our paper because we train the model again, while the avg. F1 is very similar)


An ASD Demo with pretrained TalkNet model

Data preparation

We build an end-to-end script to detect and extract the active speaker from the raw video by our pretrain model in TalkSet.

You can put the raw video (.mp4 and .avi are both fine) into the demo folder, such as 001.mp4.

Usage

python demoTalkNet.py --videoName 001

A pretrain model in TalkSet will be downloaded into TalkNet_ASD/pretrain_TalkSet.model. The structure of the output reults can be found in here.

You can get the output video demo/001/pyavi/video_out.avi, which has marked the active speaker by green box and non-active speaker by red box.


Citation

Please cite the following if our paper or code is helpful to your research.

@article{tao2021TalkNet,
  title={Is Someone Speaking? Exploring Long-term Temporal Features for Audio-visual Active Speaker Detection},
  author={Ruijie Tao, Zexu Pan, Rohan Kumar Das, Xinyuan Qian, Mike Zheng Shou, Haizhou Li},
  journal={ACM Multimedia (MM)},
  year={2021}
}

I have summaried some potential FAQs. This is my first open-source work, please let me know if I can future improve in this repositories. Thanks for your support!

Owner
NUS ECE PhD student
Uses Google's gTTS module to easily create robo text readin' on command.

Tool to convert text to speech, creating files for later use. TTRS uses Google's gTTS module to easily create robo text readin' on command.

0 Jun 20, 2021
🐍 A hyper-fast Python module for reading/writing JSON data using Rust's serde-json.

A hyper-fast, safe Python module to read and write JSON data. Works as a drop-in replacement for Python's built-in json module. This is alpha software

Matthias 479 Jan 01, 2023
Final Project Bootcamp Zero

The Quest (Pygame) Descripción Este es el repositorio de código The-Quest para el proyecto final Bootcamp Zero de KeepCoding. El juego consiste en la

Seven-z01 1 Mar 02, 2022
NumPy String-Indexed is a NumPy extension that allows arrays to be indexed using descriptive string labels

NumPy String-Indexed NumPy String-Indexed is a NumPy extension that allows arrays to be indexed using descriptive string labels, rather than conventio

Aitan Grossman 1 Jan 08, 2022
Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models

PEGASUS library Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models, or PEGASUS, uses self-supervised

Google Research 1.4k Dec 22, 2022
Official Stanford NLP Python Library for Many Human Languages

Official Stanford NLP Python Library for Many Human Languages

Stanford NLP 6.4k Jan 02, 2023
Abhijith Neil Abraham 2 Nov 05, 2021
Blazing fast language detection using fastText model

Luga A blazing fast language detection using fastText's language models Luga is a Swahili word for language. fastText provides a blazing fast language

Prayson Wilfred Daniel 18 Dec 20, 2022
Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022)

SyntaxGen Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022) In this repo, we upload all the scripts for this work. Due to siz

Zhuosheng Zhang 3 Jun 13, 2022
Mysticbbs-rjam - rJAM splitscreen message reader for MysticBBS A46+

rJAM splitscreen message reader for MysticBBS A46+

Robbert Langezaal 4 Nov 22, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 07, 2023
Predicting the usefulness of reviews given the review text and metadata surrounding the reviews.

Predicting Yelp Review Quality Table of Contents Introduction Motivation Goal and Central Questions The Data Data Storage and ETL EDA Data Pipeline Da

Jeff Johannsen 3 Nov 27, 2022
Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".

Dual Path Learning for Domain Adaptation of Semantic Segmentation Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Sema

27 Dec 22, 2022
Chatbot with Pytorch, Python & Nextjs

Installation Instructions Make sure that you have Python 3, gcc, venv, and pip installed. Clone the repository $ git clone https://github.com/sahr

Rohit Sah 0 Dec 11, 2022
Yuqing Xie 2 Feb 17, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
Sequence-to-Sequence Framework in PyTorch

nmtpytorch allows training of various end-to-end neural architectures including but not limited to neural machine translation, image captioning and au

LIUM 395 Nov 21, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

9 Jan 08, 2023
NLP Text Classification

多标签文本分类任务 近年来随着深度学习的发展,模型参数的数量飞速增长。为了训练这些参数,需要更大的数据集来避免过拟合。然而,对于大部分NLP任务来说,构建大规模的标注数据集非常困难(成本过高),特别是对于句法和语义相关的任务。相比之下,大规模的未标注语料库的构建则相对容易。为了利用这些数据,我们可以

Jason 1 Nov 11, 2021
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 68 Jan 06, 2023