Convolutional 2D Knowledge Graph Embeddings resources

Related tags

Text Data & NLPConvE
Overview

ConvE

Convolutional 2D Knowledge Graph Embeddings resources.

Paper: Convolutional 2D Knowledge Graph Embeddings

Used in the paper, but do not use these datasets for your research: FB15k and WN18. Please also note that the Kinship and Nations datasets have a high number of inverse relationships which makes them unsuitable for research. Nations has +95% inverse relationships and Kinship about 48%.

ConvE key facts

Predictive performance

Dataset MR MRR [email protected] [email protected] [email protected]
FB15k 64 0.75 0.87 0.80 0.67
WN18 504 0.94 0.96 0.95 0.94
FB15k-237 246 0.32 0.49 0.35 0.24
WN18RR 4766 0.43 0.51 0.44 0.39
YAGO3-10 2792 0.52 0.66 0.56 0.45
Nations 2 0.82 1.00 0.88 0.72
UMLS 1 0.94 0.99 0.97 0.92
Kinship 2 0.83 0.98 0.91 0.73

Run time performance

For an embedding size of 200 and batch size 128, a single batch takes on a GTX Titan X (Maxwell):

  • 64ms for 100,000 entities
  • 80ms for 1,000,000 entities

Parameter efficiency

Parameters ConvE/DistMult MRR ConvE/DistMult [email protected] ConvE/DistMult [email protected]
~5.0M 0.32 / 0.24 0.49 / 0.42 0.24 / 0.16
1.89M 0.32 / 0.23 0.49 / 0.41 0.23 / 0.15
0.95M 0.30 / 0.22 0.46 / 0.39 0.22 / 0.14
0.24M 0.26 / 0.16 0.39 / 0.31 0.19 / 0.09

ConvE with 8 times less parameters is still more powerful than DistMult. Relational Graph Convolutional Networks use roughly 32x more parameters to have the same performance as ConvE.

Installation

This repo supports Linux and Python installation via Anaconda.

  1. Install PyTorch using Anaconda.
  2. Install the requirements pip install -r requirements.txt
  3. Download the default English model used by spaCy, which is installed in the previous step python -m spacy download en
  4. Run the preprocessing script for WN18RR, FB15k-237, YAGO3-10, UMLS, Kinship, and Nations: sh preprocess.sh
  5. You can now run the model

Running a model

Parameters need to be specified by white-space tuples for example:

CUDA_VISIBLE_DEVICES=0 python main.py --model conve --data FB15k-237 \
                                      --input-drop 0.2 --hidden-drop 0.3 --feat-drop 0.2 \
                                      --lr 0.003 --preprocess

will run a ConvE model on FB15k-237.

To run a model, you first need to preprocess the data once. This can be done by specifying the --preprocess parameter:

CUDA_VISIBLE_DEVICES=0 python main.py --data DATASET_NAME --preprocess

After the dataset is preprocessed it will be saved to disk and this parameter can be omitted.

CUDA_VISIBLE_DEVICES=0 python main.py --data DATASET_NAME

The following parameters can be used for the --model parameter:

conve
distmult
complex

The following datasets can be used for the --data parameter:

FB15k-237
WN18RR
YAGO3-10
umls
kinship
nations

And here a complete list of parameters.

Link prediction for knowledge graphs

optional arguments:
  -h, --help            show this help message and exit
  --batch-size BATCH_SIZE
                        input batch size for training (default: 128)
  --test-batch-size TEST_BATCH_SIZE
                        input batch size for testing/validation (default: 128)
  --epochs EPOCHS       number of epochs to train (default: 1000)
  --lr LR               learning rate (default: 0.003)
  --seed S              random seed (default: 17)
  --log-interval LOG_INTERVAL
                        how many batches to wait before logging training
                        status
  --data DATA           Dataset to use: {FB15k-237, YAGO3-10, WN18RR, umls,
                        nations, kinship}, default: FB15k-237
  --l2 L2               Weight decay value to use in the optimizer. Default:
                        0.0
  --model MODEL         Choose from: {conve, distmult, complex}
  --embedding-dim EMBEDDING_DIM
                        The embedding dimension (1D). Default: 200
  --embedding-shape1 EMBEDDING_SHAPE1
                        The first dimension of the reshaped 2D embedding. The
                        second dimension is infered. Default: 20
  --hidden-drop HIDDEN_DROP
                        Dropout for the hidden layer. Default: 0.3.
  --input-drop INPUT_DROP
                        Dropout for the input embeddings. Default: 0.2.
  --feat-drop FEAT_DROP
                        Dropout for the convolutional features. Default: 0.2.
  --lr-decay LR_DECAY   Decay the learning rate by this factor every epoch.
                        Default: 0.995
  --loader-threads LOADER_THREADS
                        How many loader threads to use for the batch loaders.
                        Default: 4
  --preprocess          Preprocess the dataset. Needs to be executed only
                        once. Default: 4
  --resume              Resume a model.
  --use-bias            Use a bias in the convolutional layer. Default: True
  --label-smoothing LABEL_SMOOTHING
                        Label smoothing value to use. Default: 0.1
  --hidden-size HIDDEN_SIZE
                        The side of the hidden layer. The required size
                        changes with the size of the embeddings. Default: 9728
                        (embedding size 200).

To reproduce most of the results in the ConvE paper, you can use the default parameters and execute the command below:

CUDA_VISIBLE_DEVICES=0 python main.py --data DATASET_NAME

For the reverse model, you can run the provided file with the name of the dataset name and a threshold probability:

python inverse_model.py WN18RR 0.9

Changing the embedding size for ConvE

If you want to change the embedding size you can do that via the ``--embedding-dim parameter. However, for ConvE, since the embedding is reshaped as a 2D embedding one also needs to pass the first dimension of the reshaped embedding (--embedding-shape1`) while the second dimension is infered. When once changes the embedding size, the hidden layer size `--hidden-size` also needs to be different but it is difficult to determine before run time. The easiest way to determine the hidden size is to run the model, let it run on an error due to wrong shape, and then reshape according to the dimension in the error message.

Example: Change embedding size to be 100. We want 10x10 2D embeddings. We run python main.py --embedding-dim 100 --embedding-shape1 10 and we run on an error due to wrong hidden dimension:

   ret = torch.addmm(bias, input, weight.t())
RuntimeError: size mismatch, m1: [128 x 4608], m2: [9728 x 100] at /opt/conda/conda-bld/pytorch_1565272271120/work/aten/src/THC/generic/THCTensorMathBlas.cu:273

Now we change the hidden dimension to 4608 accordingly: python main.py --embedding-dim 100 --embedding-shape1 10 --hidden-size 4608. Now the model runs with an embedding size of 100 and 10x10 2D embeddings.

Adding new datasets

To run it on a new datasets, copy your dataset folder into the data folder and make sure your dataset split files have the name train.txt, valid.txt, and test.txt which contain tab separated triples of a knowledge graph. Then execute python wrangle_KG.py FOLDER_NAME, afterwards, you can use the folder name of your dataset in the dataset parameter.

Adding your own model

You can easily write your own knowledge graph model by extending the barebone model MyModel that can be found in the model.py file.

Quirks

There are some quirks of this framework.

  1. The model currently ignores data that does not fit into the specified batch size, for example if your batch size is 100 and your test data is 220, then 20 samples will be ignored. This is designed in that way to improve performance on small datasets. To test on the full test-data you can save the model checkpoint, load the model (with the --resume True variable) and then evaluate with a batch size that fits the test data (for 220 you could use a batch size of 110). Another solution is to just use a fitting batch size from the start, that is, you could train with a batch size of 110.

Issues

It has been noted that #6 WN18RR does contain 212 entities in the test set that do not appear in the training set. About 6.7% of the test set is affected. This means that most models will find it impossible to make any reasonable predictions for these entities. This will make WN18RR appear more difficult than it really is, but it should not affect the usefulness of the dataset. If all researchers compared to the same datasets the scores will still be comparable.

Logs

Some log files of the original research are included in the repo (logs.tar.gz). These log files are mostly unstructured in names and might be created from checkpoints so that it is difficult to comprehend them. Nevertheless, it might help to replicate the results or study the behavior of the training under certain conditions and thus I included them here.

Citation

If you found this codebase or our work useful please cite us:

@inproceedings{dettmers2018conve,
	Author = {Dettmers, Tim and Pasquale, Minervini and Pontus, Stenetorp and Riedel, Sebastian},
	Booktitle = {Proceedings of the 32th AAAI Conference on Artificial Intelligence},
	Title = {Convolutional 2D Knowledge Graph Embeddings},
	Url = {https://arxiv.org/abs/1707.01476},
	Year = {2018},
        pages  = {1811--1818},
  	Month = {February}
}



Owner
Tim Dettmers
Tim Dettmers
Multilingual text (NLP) processing toolkit

polyglot Polyglot is a natural language pipeline that supports massive multilingual applications. Free software: GPLv3 license Documentation: http://p

RAMI ALRFOU 2.1k Jan 07, 2023
SHAS: Approaching optimal Segmentation for End-to-End Speech Translation

SHAS: Approaching optimal Segmentation for End-to-End Speech Translation In this repo you can find the code of the Supervised Hybrid Audio Segmentatio

Machine Translation @ UPC 21 Dec 20, 2022
HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools

HuggingSound HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools. I have no intention of building a very complex tool here.

Jonatas Grosman 247 Dec 26, 2022
A text file containing 479k English words for all your dictionary/word-based projects e.g: auto-completion / autosuggestion

List Of English Words A text file containing over 466k English words. While searching for a list of english words (for an auto-complete tutorial) I fo

dwyl 8.5k Jan 03, 2023
🌸 fastText + Bloom embeddings for compact, full-coverage vectors with spaCy

floret: fastText + Bloom embeddings for compact, full-coverage vectors with spaCy floret is an extended version of fastText that can produce word repr

Explosion 222 Dec 16, 2022
Code Generation using a large neural network called GPT-J

CodeGenX is a Code Generation system powered by Artificial Intelligence! It is delivered to you in the form of a Visual Studio Code Extension and is Free and Open-source!

DeepGenX 389 Dec 31, 2022
An open source framework for seq2seq models in PyTorch.

pytorch-seq2seq Documentation This is a framework for sequence-to-sequence (seq2seq) models implemented in PyTorch. The framework has modularized and

International Business Machines 1.4k Jan 02, 2023
Parrot is a paraphrase based utterance augmentation framework purpose built to accelerate training NLU models

Parrot is a paraphrase based utterance augmentation framework purpose built to accelerate training NLU models. A paraphrase framework is more than just a paraphrasing model.

Prithivida 681 Jan 01, 2023
Black for Python docstrings and reStructuredText (rst).

Style-Doc Style-Doc is Black for Python docstrings and reStructuredText (rst). It can be used to format docstrings (Google docstring format) in Python

Telekom Open Source Software 13 Oct 24, 2022
Signature remover is a NLP based solution which removes email signatures from the rest of the text.

Signature Remover Signature remover is a NLP based solution which removes email signatures from the rest of the text. It helps to enchance data conten

Forges Alterway 8 Jan 06, 2023
Source code of the "Graph-Bert: Only Attention is Needed for Learning Graph Representations" paper

Graph-Bert Source code of "Graph-Bert: Only Attention is Needed for Learning Graph Representations". Please check the script.py as the entry point. We

14 Mar 25, 2022
Fully featured implementation of Routing Transformer

Routing Transformer A fully featured implementation of Routing Transformer. The paper proposes using k-means to route similar queries / keys into the

Phil Wang 246 Jan 02, 2023
Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP This repository maintains some utility scripts for retrieving and preprocessing Wikipedia text

Masatoshi Suzuki 44 Oct 19, 2022
The first online catalogue for Arabic NLP datasets.

Masader The first online catalogue for Arabic NLP datasets. This catalogue contains 200 datasets with more than 25 metadata annotations for each datas

ARBML 94 Dec 26, 2022
ChatBotProyect - This is an unfinished project about a simple chatbot.

chatBotProyect This is an unfinished project about a simple chatbot. (union_todo.ipynb) Reminders for the project: Find why one of the vectorizers fai

Tomás 0 Jul 24, 2022
PUA Programming Language written in Python.

pua-lang PUA Programming Language written in Python. Installation git clone https://github.com/zhaoyang97/pua-lang.git cd pua-lang pip install . Try

zy 4 Feb 19, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
Yodatranslator is a simple translator English to Yoda-language

yodatranslator Overview yodatranslator is a simple translator English to Yoda-language. Project is created for educational purposes. It is intended to

1 Nov 11, 2021
Application for shadowing Chinese.

chinese-shadowing Simple APP for shadowing chinese. With this application, it is very easy to record yourself, play the sound recorded and listen to s

Thomas Hirtz 5 Sep 06, 2022
A full spaCy pipeline and models for scientific/biomedical documents.

This repository contains custom pipes and models related to using spaCy for scientific documents. In particular, there is a custom tokenizer that adds

AI2 1.3k Jan 03, 2023