Final Project for the Intel AI Readiness Boot Camp NLP (Jan)

Overview

NLP Boot Camp (Jan) Synopsis

Full Name:

Prameya Mohanty

Name of your School:

Delhi Public School, Rourkela

Class:

VIII

Title of the Project:

iTransect – A Language Detector cum Translator

Project Domain:

Natural Language Processing

Summary:

This application is an AI and NLP enabled language detector cum translator. It can first detect the language used in the text entered by the user. Then it can also convert the text in your desired language. This app has a capability to recognize and translate text to over 15 languages.

Context:

We frequently face problems while reading google articles or while going through websites which are not in English language or our mother tongue. Many rural people also don't understand any language except their Mother Tongue. So, they can also translate the text and go through it.

My idea for this problem is that we can create a translator to translate the text into a language which we can understand. But another problem which occurs is that we need to first recognize that the original text is written in which language and mostly we fail to do so. For this reason, my application would just take the text as input, recognize the language of the text and then it would also translate the text into our desired language.

I transformed my idea into a solution by performing some Natural Language Processing on the text given by the user to first recognize the language used in the text and then translate into the desired language of the user.

How does it work:

I have used the MultinomialNB Model of the Scikit-Learn Library. The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for text classification). The multinomial distribution normally requires integer feature counts. However, in practice, fractional counts such as tf-idf may also work.

My application contains a Huge Dataset which contains over 15 languages and some texts on those languages. This dataset in trained on the MultinomialNB Model of the Scikit-Learn Library. This helps it to predict the language of the desired text which we provide to it. Then I have used the GoogleTrans API to Translate our Text into the desired language of the user.

My application takes some text as input from the user. Then it detects the language used in the text by a MultinomialNB Model of the Scikit-Learn Library. After that it uses the GoogleTrans API to translate the text into the desired language of the user.

The future scope of my model is that we can increase the dataset by adding more languages so that the predictions would be more accurate. This would also help our application to cover a broader audience.

Instructions for Usage:

  1. Prerequisite: To use this application, you should have Python installed in your system. Installation of Git is recommended but not compulsory.

  2. Clone Repo: If you have git installed in your system then you can use the command given here or else you can just click on the Code button and then click on the Download ZIP Button. git clone https://github.com/The-Coding-Hub/iTransect.git

  3. Install Requirements: Now you need to install the requirements of this application using pip and the requirements.txt file. Command to be executed in the console is given below. pip install -r ./requirements.txt

  4. Start App: Now you are all set the use this application. You just need to execute the command given below to start the development server of Python Flask in your Localhost.

  5. Enjoy App: Just open the link given in your console and then you can enjoy our application!

Video Link:

https://youtu.be/QsJQ1lxI2Lw

Code Folder Link:

https://github.com/The-Coding-Hub/iTransect

Owner
TheCodingHub
Student at Delhi Public School, Rourkela, Odisha. Programming is my favorite sport. YouTube Channel: TheCodingHub
TheCodingHub
Switch spaces for knowledge graph embeddings

SwisE Switch spaces for knowledge graph embeddings. Requirements: python3 pytorch numpy tqdm Reproduce the results To reproduce the reported results,

Shuai Zhang 4 Dec 01, 2021
Python implementation of TextRank for phrase extraction and summarization of text documents

PyTextRank PyTextRank is a Python implementation of TextRank as a spaCy pipeline extension, used to: extract the top-ranked phrases from text document

derwen.ai 1.9k Jan 06, 2023
The NewSHead dataset is a multi-doc headline dataset used in NHNet for training a headline summarization model.

This repository contains the raw dataset used in NHNet [1] for the task of News Story Headline Generation. The code of data processing and training is available under Tensorflow Models - NHNet.

Google Research Datasets 31 Jul 15, 2022
List of GSoC organisations with number of times they have been selected.

Welcome to GSoC Organisation Frequency And Details 👋 List of GSoC organisations with number of times they have been selected, techonologies, topics,

Shivam Kumar Jha 41 Oct 01, 2022
Longformer: The Long-Document Transformer

Longformer Longformer and LongformerEncoderDecoder (LED) are pretrained transformer models for long documents. ***** New December 1st, 2020: Longforme

AI2 1.6k Dec 29, 2022
The ibet-Prime security token management system for ibet network.

ibet-Prime The ibet-Prime security token management system for ibet network. Features ibet-Prime is an API service that enables the issuance and manag

BOOSTRY 8 Dec 22, 2022
The Sudachi synonym dictionary in Solar format.

solr-sudachi-synonyms The Sudachi synonym dictionary in Solar format. Summary Run a script that checks for updates to the Sudachi dictionary every hou

Karibash 3 Aug 19, 2022
An open collection of annotated voices in Japanese language

声庭 (Koniwa): オープンな日本語音声とアノテーションのコレクション Koniwa (声庭): An open collection of annotated voices in Japanese language 概要 Koniwa(声庭)は利用・修正・再配布が自由でオープンな音声とアノテ

Koniwa project 32 Dec 14, 2022
The code from the whylogs workshop in DataTalks.Club on 29 March 2022

whylogs Workshop The code from the whylogs workshop in DataTalks.Club on 29 March 2022 whylogs - The open source standard for data logging (Don't forg

DataTalksClub 12 Sep 05, 2022
An open-source NLP library: fast text cleaning and preprocessing.

An open-source NLP library: fast text cleaning and preprocessing

Iaroslav 21 Mar 18, 2022
Labelling platform for text using distant supervision

With DataQA, you can label unstructured text documents using rule-based distant supervision.

245 Aug 05, 2022
Code for "Generative adversarial networks for reconstructing natural images from brain activity".

Reconstruct handwritten characters from brains using GANs Example code for the paper "Generative adversarial networks for reconstructing natural image

K. Seeliger 2 May 17, 2022
Implementation of Multistream Transformers in Pytorch

Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi

Phil Wang 47 Jul 26, 2022
Search msDS-AllowedToActOnBehalfOfOtherIdentity

前言 现在进行RBCD的攻击手段主要是搜索mS-DS-CreatorSID,如果机器的创建者是我们可控的话,那就可以修改对应机器的msDS-AllowedToActOnBehalfOfOtherIdentity,利用工具SharpAllowedToAct-Modify 那我们索性也试试搜索所有计算机

Jumbo 26 Dec 05, 2022
Extract Keywords from sentence or Replace keywords in sentences.

FlashText This module can be used to replace keywords in sentences or extract keywords from sentences. It is based on the FlashText algorithm. Install

Vikash Singh 5.3k Jan 01, 2023
A repository to run gpt-j-6b on low vram machines (4.2 gb minimum vram for 2000 token context, 3.5 gb for 1000 token context). Model loading takes 12gb free ram.

Basic-UI-for-GPT-J-6B-with-low-vram A repository to run GPT-J-6B on low vram systems by using both ram, vram and pinned memory. There seem to be some

90 Dec 25, 2022
A PyTorch-based model pruning toolkit for pre-trained language models

English | 中文说明 TextPruner是一个为预训练语言模型设计的模型裁剪工具包,通过轻量、快速的裁剪方法对模型进行结构化剪枝,从而实现压缩模型体积、提升模型速度。 其他相关资源: 知识蒸馏工具TextBrewer:https://github.com/airaria/TextBrewe

Ziqing Yang 231 Jan 08, 2023
BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese

Table of contents Introduction Using BARTpho with fairseq Using BARTpho with transformers Notes BARTpho: Pre-trained Sequence-to-Sequence Models for V

VinAI Research 58 Dec 23, 2022