Code for Findings at EMNLP 2021 paper: "Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning"

Related tags

Text Data & NLPCLIF
Overview

Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning

This repo is for Findings at EMNLP 2021 paper: Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning. Code clean-up is still in progress.

Data

Please extract the downloaded data and place it under PROJECT_DIR/datasets. Our training data stream and few-shot datasets are curated from https://github.com/iesl/leopard and https://github.com/INK-USC/CrossFit.

The directory structure is

PROJECT_DIR/datasets/crossfit_data/data/ + 55 classification tasks from the link above, e.g. PROJECT_DIR/datasets/crossfit_data/data/anli
PROJECT_DIR/datasets/leopard/ + 17 tasks from the link above, e.g. PROJECT_DIR/datasets/leopard/airline

Environment

Our code uses PyTorch 1.7.1. To allow fp16 training, you should also install apex.

Running Experiments

Training on CLIF-26

reg=0.01
lr=1e-4
seed=0
python run_model.py --tasks cola sst2 mrpc stsb qqp mnli qnli rte wnli \
--output_dir runs/glue_cfew_10k_choice_hnet_hardlong_sample_reg${reg}_s64_d256_limit/${lr}/${seed} \
--do_train --eval_period 100000 --eval_at_epoch_end  --wait_step 3 --num_train_epochs 100 --seed ${seed} \
--train_batch_size 64 --gradient_accumulation_steps 2 --learning_rate ${lr} --max_output_length 8 \
--generator_hdim 32 --example_limit 100 --train_limit 10000 --cl_method hnet --h_l2reg ${reg} \
--adapter_dim 256 --adapter_dim_final 64  --hard_long_term  --limit_label_vocab_space \
--sample_batch --scale_loss --stm_size 64

Few-shot evaluation on CLIF-26

python run_model.py --task_collection leopard --k_shot 16 --max_input_length 100  \
--output_dir /runs/glue_cfew_10k_choice_hnet_hardlong_sample_reg${reg}_s64_d256_limit/${lr}/${seed} \
--do_few_shot_predict --eval_period 100000 --eval_at_epoch_end  --wait_step 3 --num_train_epochs 100 \
--seed ${seed} --train_batch_size 64 --predict_batch_size 16 --few_shot_train_batch_size 16 \
--few_shot_wait_step 100000 --few_shot_num_train_epochs 800 --wait_step 3 --gradient_accumulation_steps 4 \
--scale_by_accumulation --learning_rate ${lr} --max_output_length 8  --generator_hdim 32 \
--example_limit 100 --train_limit 10000 --cl_method naive --h_l2reg ${reg} --adapter_dim 256 \
--adapter_dim_final 64 --hard_long_term --limit_label_vocab_space --no_short_term --long_term_task_emb_num 9 \
--postfix "naive_16shot"  --sample_batch --stm_size 64 --few_shot_eval_period 200

Training and evaluation on CLIF-55

reg=0.01
lr=1e-4
seed=0
python run_model.py  --task_collection crossfit_cls_train --crossfit_k_shot 16 --ssd --output_dir runs/crossfit_hnet_merge_space_${reg}/${lr}/${seed} --skip_intermediate_ckpt --add_space --merge_split --split_id ${seed} --seed ${seed} --do_train --eval_every_k_tasks 5 --eval_period 100 --skip_intermediate_ckpt --train_batch_size 64 --wait_step 3 --num_train_epochs 10000000  --learning_rate ${lr} --max_output_length 64 --example_limit 100 --train_limit 10000 --cl_method hnet --h_l2reg ${reg} --adapter_dim 256 --generator_hdim 32 --adapter_dim_final 64 --sample_batch --hard_long_term --stm_size 64
python run_model.py --task_collection crossfit_cls_train --crossfit_k_shot 16 --ssd --output_dir runs/crossfit_hnet_merge_space${reg}/${lr}/${seed} --skip_intermediate_ckpt --add_space --merge_split --split_id ${seed} --seed ${seed} --do_predict --eval_every_k_tasks 5 --eval_period 100 --skip_intermediate_ckpt --train_batch_size 64 --wait_step 3 --num_train_epochs 10000000  --learning_rate ${lr} --max_output_length 64 --example_limit 100 --train_limit 10000 --cl_method hnet --h_l2reg ${reg} --adapter_dim 256 --generator_hdim 32 --adapter_dim_final 64 --sample_batch --hard_long_term --stm_size 64
for split_id in 0 1 2 3 4
do
  python run_model.py --task_collection crossfit_cls_test --crossfit_k_shot 16 --ssd --postfix "split${split_id}"  --long_term_task_emb_num 45 --do_few_shot_predict --few_shot_eval_period 200 --few_shot_num_train_epochs 800 --few_shot_train_batch_size 64 --few_shot_wait_step 100 --mtl_task_num 45 --output_dir runs/crossfit_hnet_merge_space_${reg}/${lr}/${seed} --add_space  --limit_label_vocab_space --split_id ${split_id} --seed ${seed} --eval_period 100 --train_batch_size 64 --gradient_accumulation_steps 1 --wait_step 6 --num_train_epochs 10000  --learning_rate ${lr} --max_output_length 64 --example_limit 100 --train_limit 10000 --cl_method naive --adapter_dim 256 --generator_hdim 32 --adapter_dim_final 64 --sample_batch --hard_long_term
done

Here are mapping between command line arguments and implemented methods.

  • BART-Single without adapter: --cl_method naive --no_param_gen --skip_adapter --train_all
  • BART-Single-MTL: --cl_method naive --no_param_gen --skip_mtl --mtl --train_all
  • BiHNET-Vanilla: --cl_method naive --hard_long_term
  • BiHNET with trained task embeddings: --cl_method hnet --no_short_term --train_task_embs --hard_long_term
  • BART-Adapter-Single: --cl_method naive --no_param_gen --lr 3e-4
Owner
INK Lab @ USC
Intelligence and Knowledge Discovery (INK) Research Lab at University of Southern California
INK Lab @ USC
My implementation of Safaricom Machine Learning Codility test. The code has bugs, logical I guess I made errors and any correction will be appreciated.

Safaricom_Codility Machine Learning 2022 The test entails two questions. Question 1 was on Machine Learning. Question 2 was on SQL I ran out of time.

Lawrence M. 1 Mar 03, 2022
CLIPfa: Connecting Farsi Text and Images

CLIPfa: Connecting Farsi Text and Images OpenAI released the paper Learning Transferable Visual Models From Natural Language Supervision in which they

Sajjad Ayoubi 66 Dec 14, 2022
Code for "Finetuning Pretrained Transformers into Variational Autoencoders"

transformers-into-vaes Code for Finetuning Pretrained Transformers into Variational Autoencoders (our submission to NLP Insights Workshop 2021). Gathe

Seongmin Park 22 Nov 26, 2022
A repository to run gpt-j-6b on low vram machines (4.2 gb minimum vram for 2000 token context, 3.5 gb for 1000 token context). Model loading takes 12gb free ram.

Basic-UI-for-GPT-J-6B-with-low-vram A repository to run GPT-J-6B on low vram systems by using both ram, vram and pinned memory. There seem to be some

90 Dec 25, 2022
NLP project that works with news (NER, context generation, news trend analytics)

СоАвтор СоАвтор – платформа и открытый набор инструментов для редакций и журналистов-фрилансеров, который призван сделать процесс создания контента ма

38 Jan 04, 2023
Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation (SIGGRAPH Asia 2021)

Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation This repository contains the implementation of the following paper: Live Speech

OldSix 575 Dec 31, 2022
(ACL-IJCNLP 2021) Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models.

BERT Convolutions Code for the paper Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models. Contains expe

mlpc-ucsd 21 Jul 18, 2022
Athena is an open-source implementation of end-to-end speech processing engine.

Athena is an open-source implementation of end-to-end speech processing engine. Our vision is to empower both industrial application and academic research on end-to-end models for speech processing.

Ke Technologies 34 Sep 08, 2022
MicBot - MicBot uses Google Translate to speak everyone's chat messages

MicBot MicBot uses Google Translate to speak everyone's chat messages. It can al

2 Mar 09, 2022
LightSeq: A High-Performance Inference Library for Sequence Processing and Generation

LightSeq is a high performance inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP models such as BERT, GPT2, Transform

Bytedance Inc. 2.5k Jan 03, 2023
Voice Assistant inspired by Google Assistant, Cortana, Alexa, Siri, ...

author: @shival_gupta VoiceAI This program is an example of a simple virtual assitant It will listen to you and do accordingly It will begin with wish

Shival Gupta 1 Jan 06, 2022
An extensive UI tool built using new data scraped from BBC News

BBC-News-Analyzer An extensive UI tool built using new data scraped from BBC New

Antoreep Jana 1 Dec 31, 2021
🚀 RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.

In recent years, the dense retrievers based on pre-trained language models have achieved remarkable progress. To facilitate more developers using cutt

475 Jan 04, 2023
🦅 Pretrained BigBird Model for Korean (up to 4096 tokens)

Pretrained BigBird Model for Korean What is BigBird • How to Use • Pretraining • Evaluation Result • Docs • Citation 한국어 | English What is BigBird? Bi

Jangwon Park 183 Dec 14, 2022
本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。

【关于 NLP】那些你不知道的事 作者:杨夕、芙蕖、李玲、陈海顺、twilight、LeoLRH、JimmyDU、艾春辉、张永泰、金金金 介绍 本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。 目录架构 一、【

1.4k Dec 30, 2022
A deep learning-based translation library built on Huggingface transformers

DL Translate A deep learning-based translation library built on Huggingface transformers and Facebook's mBART-Large 💻 GitHub Repository 📚 Documentat

Xing Han Lu 244 Dec 30, 2022
VoiceFixer VoiceFixer is a framework for general speech restoration.

VoiceFixer VoiceFixer is a framework for general speech restoration. We aim at the restoration of severly degraded speech and historical speech. Paper

Leo 174 Jan 06, 2023
Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet.

Sonnet finder Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet. Usage This is a Python scrip

Marcel Bollmann 11 Sep 25, 2022
Simple bots or Simbots is a library designed to create simple bots using the power of python. This library utilises Intent, Entity, Relation and Context model to create bots .

Simple bots or Simbots is a library designed to create simple chat bots using the power of python. This library utilises Intent, Entity, Relation and

14 Dec 15, 2021