PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner [Li et al., 2020].

Overview

VGPL-Visual-Prior

PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner (VGPL). Given visual obseravtions, the visual prior proposes their corresponding particle representations, in the form of particle positions and groupings. Please see the following paper for more details.

Visual Grounding of Learned Physical Models

Yunzhu Li, Toru Lin*, Kexin Yi*, Daniel M. Bear, Daniel L. K. Yamins, Jiajun Wu, Joshua B. Tenenbaum, and Antonio Torralba

ICML 2020 [website] [paper] [video]

Demo

Input RGB videos and predictions from our learned model

Prerequisites

  • Python 3
  • PyTorch 1.0 or higher, with NVIDIA CUDA Support
  • Other required packages in requirements.txt

Code overview

Helper files

config.py contains all configurations used for model training, model evaluation and output generation.

dataset.py contains helper functions for loading and standardizing data and related variables. Note that paths to data directories is specified in the _DATA_DIR variable in this file, not in config.py.

loss.py contains helper functions for calculating Chamfer loss in different settings (e.g. in a single frame, across a time sequence, etc.).

model.py implements the neural network model used for prediction.

Main files

The following files can be run directly; see "Training and evaluation" section for more details.

train.py trains a model that could convert input observations into their particle representations.

eval.py evaluates a trained model by visualizing its predictions, and/or stores the output predictions in .h5 format.

Training and evaluation

Download the training and evaluation data from the following links, and put them in data folder. Optionally, download our trained model checkpoints and put them in dump folder.

To train a model:

python train.py --set loss_type l2 dataset RigidFall

To debug (by overfitting model on small batch of data):

python train.py --set loss_type l2 dataset RigidFall debug True

To evaluate a trained model and generate outputs using our provided checkpoints:

python eval.py --set loss_type l2 dataset RigidFall n_frames 4 n_frames_eval 30 load_path dump/rigid_fall_4frame_l2.pth
python eval.py --set loss_type l2 dataset MassRope n_frames 4 n_frames_eval 30 load_path dump/mass_rope_4frame_l2.pth

See config.py for more details on customizable configurations.

Citing VGPL

If you find this codebase useful in your research, please consider citing:

@inproceedings{li2020visual,
    Title={Visual Grounding of Learned Physical Models},
    Author={Li, Yunzhu and Lin, Toru and Yi, Kexin and Bear, Daniel and Yamins, Daniel L.K. and Wu, Jiajun and Tenenbaum, Joshua B. and Torralba, Antonio},
    Booktitle={ICML},
    Year={2020}
}

@inproceedings{li2019learning,
    Title={Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and Fluids},
    Author={Li, Yunzhu and Wu, Jiajun and Tedrake, Russ and Tenenbaum, Joshua B and Torralba, Antonio},
    Booktitle={ICLR},
    Year={2019}
}
Owner
Toru
Toru
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
Roadmap to becoming a machine learning engineer in 2020

Roadmap to becoming a machine learning engineer in 2020, inspired by web-developer-roadmap.

Chris Hoyean Song 1.7k Dec 29, 2022
Learning High-Speed Flight in the Wild

Learning High-Speed Flight in the Wild This repo contains the code associated to the paper Learning Agile Flight in the Wild. For more information, pl

Robotics and Perception Group 391 Dec 29, 2022
SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation

SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation This repo is the official implementation for SegTransVAE. Seg

Nguyen Truong Hai 4 Aug 04, 2022
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.

Alan Grijalva 49 Dec 20, 2022
Author's PyTorch implementation of TD3 for OpenAI gym tasks

Addressing Function Approximation Error in Actor-Critic Methods PyTorch implementation of Twin Delayed Deep Deterministic Policy Gradients (TD3). If y

Scott Fujimoto 1.3k Dec 25, 2022
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022
Ian Covert 130 Jan 01, 2023
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
Trajectory Extraction of road users via Traffic Camera

Traffic Monitoring Citation The associated paper for this project will be published here as soon as possible. When using this software, please cite th

Julian Strosahl 14 Dec 17, 2022
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
Improving Factual Consistency of Abstractive Text Summarization

Improving Factual Consistency of Abstractive Text Summarization We provide the code for the papers: "Entity-level Factual Consistency of Abstractive T

61 Nov 27, 2022
A note taker for NVDA. Allows the user to create, edit, view, manage and export notes to different formats.

Quick Notetaker add-on for NVDA The Quick Notetaker add-on is a wonderful tool which allows writing notes quickly and easily anytime and from any app

5 Dec 06, 2022
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning

advantage-weighted-regression Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning, by Peng et al. (

Omar D. Domingues 1 Dec 02, 2021
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
The UI as a mobile display for OP25

OP25 Mobile Control Head A 'remote' control head that interfaces with an OP25 instance. We take advantage of some data end-points left exposed for the

Sarah Rose Giddings 13 Dec 28, 2022
Advanced yabai wooting scripts

Yabai Wooting scripts Installation requirements Both https://github.com/xiamaz/python-yabai-client and https://github.com/xiamaz/python-wooting-rgb ne

Max Zhao 3 Dec 31, 2021
A Re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"

What is This This is a simple re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"(1). Only Sections

102 Dec 14, 2022
This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models"

GreaseLM: Graph REASoning Enhanced Language Models This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language

137 Jan 02, 2023