1st place solution in CCF BDCI 2021 ULSEG challenge

Overview

1st place solution in CCF BDCI 2021 ULSEG challenge

This is the source code of the 1st place solution for ultrasound image angioma segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

[Challenge leaderboard 🏆 ]

Pipeline of our solution

Our solution includes data pre-processing, network training, ensabmle inference and post-processing.

Data pre-processing

To improve our performance on the leaderboard, 5-fold cross validation is used to evaluate the performance of our proposed method. In our opinion, it is necessary to keep the size distribution of tumor in the training and validation sets. We calculate the tumor area for each image and categorize the tumor size into classes: 1) less than 3200 pixels, 2) less than 7200 pixels and greater than 3200 pixels, and 3) greater than 7200 pixels. These two thresholds, 3200 pixels and 7200 pixels, are close to the tertiles. We divide images in each size grade group into 5 folds and combined different grades of single fold into new single fold. This strategy ensured that final 5 folds had similar size distribution.

Network training

Due to the small size of the training set, for this competition, we chose a lightweight network structure: Linknet with efficientnet-B6 encoder. Following methods are performed in data augmentation (DA): 1) horizontal flipping, 2) vertical flipping, 3) random cropping, 4) random affine transformation, 5) random scaling, 6) random translation, 7) random rotation, and 8) random shearing transformation. In addition, one of the following methods was randomly selected for enhanced data augmentation (EDA): 1) sharpening, 2) local distortion, 3) adjustment of contrast, 4) blurring (Gaussian, mean, median), 5) addition of Gaussian noise, and 6) erasing.

Ensabmle inference

We ensamble five models (five folds) and do test time augmentation (TTA) for each model. TTA generally improves the generalization ability of the segmentation model. In our framework, the TTA includes vertical flipping, horizontal flipping, and rotation of 180 degrees for the segmentation task.

Post-processing

We post-processe the obtained binary mask by removing small isolated points (RSIP) and edge median filtering (EMF) . The edge part of our predicted tumor is not smooth enough, which is not quite in line with the manual annotation of the physician, so we adopt a small trick, i.e., we do a median filtering specifically for the edge part, and the experimental results show that this can improve the accuracy of tumor segmentation.

Segmentation results on 2021 CCF BDCI dataset

We test our method on 2021 CCD BDCI dataset (215 for training and 107 for testing). The segmentation results of 5-fold CV based on "Linknet with efficientnet-B6 encoder" are as following:

fold Linknet Unet Att-Unet DeeplabV3+ Efficient-b5 Efficient-b6 Resnet-34 DA EDA TTA RSIP EMF Dice (%)
1 85.06
1 84.48
1 84.72
1 84.93
1 86.52
1 86.18
1 86.91
1 87.38
1 88.36
1 89.05
1 89.20
1 89.52
E 90.32

How to run this code?

Here, we split the whole process into 5 steps so that you can easily replicate our results or perform the whole pipeline on your private custom dataset.

  • step0, preparation of environment
  • step1, run the script preprocess.py to perform the preprocessing
  • step2, run the script train.py to train our model
  • step3, run the script inference.py to inference the test data.
  • step4, run the script postprocess.py to perform the preprocessing.

You should prepare your data in the format of 2021 CCF BDCI dataset, this is very simple, you only need to prepare: two folders store png format images and masks respectively. You can download them from [Homepage].

The complete file structure is as follows:

  |--- CCF-BDCI-2021-ULSEG-Rank1st
      |--- segmentation_models_pytorch_4TorchLessThan120
          |--- ...
          |--- ...
      |--- saved_model
          |--- pred
          |--- weights
      |--- best_model
          |--- best_model1.pth
          |--- ...
          |--- best_model5.pth
      |--- train_data
          |--- img
          |--- label
          |--- train.csv
      |--- test_data
          |--- img
          |--- predict
      |--- dataset.py
      |--- inference.py
      |--- losses.py
      |--- metrics.py
      |--- ploting.py
      |--- preprocess.py
      |--- postprocess.py
      |--- util.py
      |--- train.py
      |--- visualization.py
      |--- requirement.txt

Step0 preparation of environment

We have tested our code in following environment:

For installing these, run the following code:

pip install -r requirements.txt

Step1 preprocessing

In step1, you should run the script and train.csv can be generated under train_data fold:

python preprocess.py \
--image_path="./train_data/label" \
--csv_path="./train_data/train.csv"

Step2 training

With the csv file train.csv, you can directly perform K-fold cross validation (default is 5-fold), and the script uses a fixed random seed to ensure that the K-fold cv of each experiment is repeatable. Run the following code:

python train.py \
--input_channel=1 \
--output_class=1 \
--image_resolution=256 \
--epochs=100 \
--num_workers=2 \
--device=0 \
--batch_size=8 \
--backbone="efficientnet-b6" \
--network="Linknet" \
--initial_learning_rate=1e-7 \
--t_max=110 \
--folds=5 \
--k_th_fold=1 \
--fold_file_list="./train_data/train.csv" \
--train_dataset_path="./train_data/img" \
--train_gt_dataset_path="./train_data/label" \
--saved_model_path="./saved_model" \
--visualize_of_data_aug_path="./saved_model/pred" \
--weights_path="./saved_model/weights" \
--weights="./saved_model/weights/best_model.pth" 

By specifying the parameter k_th_fold from 1 to folds and running repeatedly, you can complete the training of all K folds. After each fold training, you need to copy the .pth file from the weights path to the best_model folder.

Step3 inference (test)

Before running the script, make sure that you have generated five models and saved them in the best_model folder. Run the following code:

python inference.py \
--input_channel=1 \
--output_class=1 \
--image_resolution=256 \
--device=0 \
--backbone="efficientnet-b6" \
--network="Linknet" \
--weights1="./saved_model/weights/best_model1.pth" \
--weights2="./saved_model/weights/best_model2.pth" \
--weights3="./saved_model/weights/best_model3.pth" \
--weights4="./saved_model/weights/best_model4.pth" \
--weights5="./saved_model/weights/best_model5.pth" \
--test_path="./test_data/img" \
--saved_path="./test_data/predict" 

The results of the model inference will be saved in the predict folder.

Step4 postprocess

Run the following code:

python postprocess.py \
--image_path="./test_data/predict" \
--threshood=50 \
--kernel=20 

Alternatively, if you want to observe the overlap between the predicted result and the original image, we also provide a visualization script visualization.py. Modify the image path in the code and run the script directly.

Acknowledgement

  • Thanks to the organizers of the 2021 CCF BDCI challenge.
  • Thanks to the 2020 MICCCAI TNSCUI TOP 1 for making the code public.
  • Thanks to qubvel, the author of smg and ttach, all network and TTA used in this code come from his implement.
Owner
Chenxu Peng
Data Science, Deep Learning
Chenxu Peng
This repository contains the map content ontology used in narrative cartography

Narrative-cartography-ontology This repository contains the map content ontology used in narrative cartography, which is associated with a submission

Weiming Huang 0 Oct 31, 2021
Simple renderer for use with MuJoCo (>=2.1.2) Python Bindings.

Viewer for MuJoCo in Python Interactive renderer to use with the official Python bindings for MuJoCo. Starting with version 2.1.2, MuJoCo comes with n

Rohan P. Singh 62 Dec 30, 2022
Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)

Residual Dense Network for Image Super-Resolution This repository is for RDN introduced in the following paper Yulun Zhang, Yapeng Tian, Yu Kong, Bine

Yulun Zhang 494 Dec 30, 2022
OpenCVのGrabCut()を利用したセマンティックセグメンテーション向けアノテーションツール(Annotation tool using GrabCut() of OpenCV. It can be used to create datasets for semantic segmentation.)

[Japanese/English] GrabCut-Annotation-Tool GrabCut-Annotation-Tool.mp4 OpenCVのGrabCut()を利用したアノテーションツールです。 セマンティックセグメンテーション向けのデータセット作成にご使用いただけます。 ※Grab

KazuhitoTakahashi 30 Nov 18, 2022
Activating More Pixels in Image Super-Resolution Transformer

HAT [Paper Link] Activating More Pixels in Image Super-Resolution Transformer Xiangyu Chen, Xintao Wang, Jiantao Zhou and Chao Dong BibTeX @article{ch

XyChen 270 Dec 27, 2022
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca

Zhenda Xie 293 Dec 20, 2022
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors In this paper, we propose a novel local descriptor-based fra

Haiping Wang 80 Dec 15, 2022
This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods

pyLiDAR-SLAM This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods, which can easily be evaluated

Kitware, Inc. 208 Dec 16, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction

We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction. This repository aims to give easy access to state-of-the-art pre-train

GMUM 90 Jan 08, 2023
A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022
A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Vehicle detection using machine learning and computer vision techniques for Udacity's Self-Driving Car Engineer Nanodegree.

Vehicle Detection Video demo Overview Vehicle detection using these machine learning and computer vision techniques. Linear SVM HOG(Histogram of Orien

hata 1.1k Dec 18, 2022