Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Overview

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yuke Zhu

Project | arxiv

Introduction

GIGA (Grasp detection via Implicit Geometry and Affordance) is a network that jointly detects 6 DOF grasp poses and reconstruct the 3D scene. GIGA takes advantage of deep implicit functions, a continuous and memory-efficient representation, to enable differentiable training of both tasks. GIGA takes as input a Truncated Signed Distance Function (TSDF) representation of the scene, and predicts local implicit functions for grasp affordance and 3D occupancy. By querying the affordance implict functions with grasp center candidates, we can get grasp quality, grasp orientation and gripper width at these centers. GIGA is trained on a synthetic grasping dataset generated with physics simulation.

Installation

  1. Create a conda environment.

  2. Install packages list in requirements.txt. Then install torch-scatter following here, based on pytorch version and cuda version.

  3. Go to the root directory and install the project locally using pip

pip install -e .
  1. Build ConvONets dependents by running python scripts/convonet_setup.py build_ext --inplace.

  2. Download the data, then unzip and place the data folder under the repo's root. Pretrained models of GIGA, GIGA-Aff and VGN are in data/models.

Self-supervised Data Generation

Raw synthetic grasping trials

Pile scenario:

python scripts/generate_data_parallel.py --scene pile --object-set pile/train --num-grasps 4000000 --num-proc 40 --save-scene ./data/pile/data_pile_train_random_raw_4M

Packed scenario:

python scripts/generate_data_parallel.py --scene packed --object-set packed/train --num-grasps 4000000 --num-proc 40 --save-scene ./data/pile/data_packed_train_random_raw_4M

Please run python scripts/generate_data_parallel.py -h to print all options.

Data clean and processing

First clean and balance the data using:

python scripts/clean_balance_data.py /path/to/raw/data

Then construct the dataset (add noise):

python scripts/construct_dataset_parallel.py --num-proc 40 --single-view --add-noise dex /path/to/raw/data /path/to/new/data

Save occupancy data

Sampling occupancy data on the fly can be very slow and block the training, so I sample and store the occupancy data in files beforehand:

python scripts/save_occ_data_parallel.py /path/to/raw/data 100000 2 --num-proc 40

Please run python scripts/save_occ_data_parallel.py -h to print all options.

Training

Train GIGA

Run:

# GIGA
python scripts/train_giga.py --dataset /path/to/new/data --dataset_raw /path/to/raw/data

Simulated grasping

Run:

python scripts/sim_grasp_multiple.py --num-view 1 --object-set (packed/test | pile/test) --scene (packed | pile) --num-rounds 100 --sideview --add-noise dex --force --best --model /path/to/model --type (vgn | giga | giga_aff) --result-path /path/to/result

This commands will run experiment with each seed specified in the arguments.

Run python scripts/sim_grasp_multiple.py -h to print a complete list of optional arguments.

Related Repositories

  1. Our code is largely based on VGN

  2. We use ConvONets as our backbone.

Owner
UT-Austin Robot Perception and Learning Lab
UT-Austin Robot Perception and Learning Lab
This is an early in-development version of training CLIP models with hivemind.

A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look

<a href=[email protected]"> 4 Nov 06, 2022
Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021) In this repository we provide PyTorch implementations for GeMCL; a

4 Apr 15, 2022
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
Implementations of paper Controlling Directions Orthogonal to a Classifier

Classifier Orthogonalization Implementations of paper Controlling Directions Orthogonal to a Classifier , ICLR 2022, Yilun Xu, Hao He, Tianxiao Shen,

Yilun Xu 33 Dec 01, 2022
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
PyTorch implementation of DCT fast weight RNNs

DCT based fast weights This repository contains the official code for the paper: Training and Generating Neural Networks in Compressed Weight Space. T

Kazuki Irie 4 Dec 24, 2022
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
Recreate CenternetV2 based on MMDET.

Introduction This project is trying to Recreate CenternetV2 based on MMDET, which is proposed in paper Probabilistic two-stage detection. This project

25 Dec 09, 2022
Gauge equivariant mesh cnn

Geometric Mesh CNN The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh C

50 Dec 18, 2022
Social Distancing Detector

Computer vision has opened up a lot of opportunities to explore into AI domain that were earlier highly limited. Here is an application of haarcascade classifier and OpenCV to develop a social distan

Ashish Pandey 2 Jul 18, 2022
[TPDS'21] COSCO: Container Orchestration using Co-Simulation and Gradient Based Optimization for Fog Computing Environments

COSCO Framework COSCO is an AI based coupled-simulation and container orchestration framework for integrated Edge, Fog and Cloud Computing Environment

imperial-qore 39 Dec 25, 2022
Code for all the Advent of Code'21 challenges mostly written in python

Advent of Code 21 Code for all the Advent of Code'21 challenges mostly written in python. They are not necessarily the best or fastest solutions but j

4 May 26, 2022
Official DGL implementation of "Rethinking High-order Graph Convolutional Networks"

SE Aggregation This is the implementation for Rethinking High-order Graph Convolutional Networks. Here we show the codes for citation networks as an e

Tianqi Zhang (张天启) 32 Jul 19, 2022
IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales

IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales. In this case, we ended up using XGBoost because it was the o

1 Jan 04, 2022
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
Code repository for the paper Computer Vision User Entity Behavior Analytics

Computer Vision User Entity Behavior Analytics Code repository for "Computer Vision User Entity Behavior Analytics" Code Description dataset.csv As di

Sameer Khanna 2 Aug 20, 2022
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Hans Brouwer 33 Jan 05, 2023
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022