ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

Overview

LM-BFF (Better Few-shot Fine-tuning of Language Models)

This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Learners. LM-BFF is short for better few-shot fine-tuning of language models.

Quick links

Overview

In this work we present LM-BFF, a suite of simple and complementary techniques for fine-tuning pre-trained language models on a small number of training examples. Our approach includes:

  1. Prompt-based fine-tuning together with a novel pipeline for automating prompt generation.
  2. A refined strategy for incorporating demonstrations into context.

You can find more details of this work in our paper.

Requirements

To run our code, please install all the dependency packages by using the following command:

pip install -r requirements.txt

NOTE: Different versions of packages (like pytorch, transformers, etc.) may lead to different results from the paper. However, the trend should still hold no matter what versions of packages you use.

Prepare the data

We pack the original datasets (SST-2, SST-5, MR, CR, MPQA, Subj, TREC, CoLA, MNLI, SNLI, QNLI, RTE, MRPC, QQP, STS-B) here. Please download it and extract the files to ./data/original, or run the following commands:

cd data
bash download_dataset.sh

Then use the following command (in the root directory) to generate the few-shot data we need:

python tools/generate_k_shot_data.py

See tools/generate_k_shot_data.py for more options. For results in the paper, we use the default options: we take K=16 and take 5 different seeds of 13, 21, 42, 87, 100. The few-shot data will be generated to data/k-shot. In the directory of each dataset, there will be folders named as $K-$SEED indicating different dataset samples. You can use the following command to check whether the generated data are exactly the same as ours:

cd data/k-shot
md5sum -c checksum

NOTE: During training, the model will generate/load cache files in the data folder. If your data have changed, make sure to clean all the cache files (starting with "cache").

Run LM-BFF

Quick start

Our code is built on transformers and we use its 3.4.0 version. Other versions of transformers might cause unexpected errors.

Before running any experiments, create the result folder by mkdir result to save checkpoints. Then you can run our code with the following example:

python run.py \
    --task_name SST-2 \
    --data_dir data/k-shot/SST-2/16-42 \
    --overwrite_output_dir \
    --do_train \
    --do_eval \
    --do_predict \
    --evaluate_during_training \
    --model_name_or_path roberta-large \
    --few_shot_type prompt-demo \
    --num_k 16 \
    --max_steps 1000 \
    --eval_steps 100 \
    --per_device_train_batch_size 2 \
    --learning_rate 1e-5 \
    --num_train_epochs 0 \
    --output_dir result/tmp \
    --seed 42 \
    --template "*cls**sent_0*_It_was*mask*.*sep+*" \
    --mapping "{'0':'terrible','1':'great'}" \
    --num_sample 16 \

Most arguments are inherited from transformers and are easy to understand. We further explain some of the LM-BFF's arguments:

  • few_shot_type: There are three modes
    • finetune: Standard fine-tuning
    • prompt: Prompt-based fine-tuning.
    • prompt-demo: Prompt-based fine-tuning with demonstrations.
  • num_k: Number of training instances for each class. We take num_k=16 in our paper. This argument is mainly used for indexing logs afterwards (because the training example numbers are actually decided by the data split you use).
  • template: Template for prompt-based fine-tuning. We will introduce the template format later.
  • mapping: Label word mapping for prompt-based fine-tuning. It is a string of dictionary indicating the mapping from label names to label words. NOTE: For RoBERTa, the model will automatically add space before the word. See the paper appendix for details.
  • num_sample: When using demonstrations during inference, the number of samples for each input query. Say num_sample=16, then we sample 16 different sets of demonstrations for one input, do the forward seperately, and average the logits for all 16 samples as the final prediction.

Also, this codebase supports BERT-series and RoBERTa-series pre-trained models in Huggingface's transformers. You can check Huggingface's website for available models and pass models with a "bert" or "roberta" in their names to --model_name_or_path. Some examples would be bert-base-uncased, bert-large-uncased, roberta-base, roberta-large, etc.

To easily run our experiments, you can also use run_experiment.sh (this command runs prompt-based fine-tuning with demonstrations, no filtering, manual prompt):

TAG=exp TYPE=prompt-demo TASK=SST-2 BS=2 LR=1e-5 SEED=42 MODEL=roberta-large bash run_experiment.sh

We have already defined the templates and label word mappings in it, so you only need manipulate several hyper-parameters and TAG (you can use whatever tag you want and it just makes finding results easier). See run_experiment.sh for more options of these environment variables. Besides, you can add extra arguments by

TAG=exp TYPE=prompt-demo TASK=SST-2 BS=2 LR=1e-5 SEED=42 MODEL=roberta-large bash run_experiment.sh "--output_dir result/exp --max_seq_length 512"

Experiments with multiple runs

To carry out experiments with multiple data splits, as the evaluation protocol detailed in $3.3 of our paper (grid-search for each seed and aggregate the results over 5 different seeds), you can use the following scripts:

for seed in 13 21 42 87 100
do
    for bs in 2 4 8
    do
        for lr in 1e-5 2e-5 5e-5
        do
            TAG=exp \
            TYPE=prompt-demo \
            TASK=SST-2 \
            BS=$bs \
            LR=$lr \
            SEED=$seed \
            MODEL=roberta-large \
            bash run_experiment.sh
        done
    done
done

All the results will be stored in ./log. To gather all the results, run the following command:

python tools/gather_result.py --condition "{'tag': 'exp', 'task_name': 'sst-2', 'few_shot_type': 'prompt-demo'}"

Then the program will find all the trials that satisfy the condition in ./log, and print the mean/std of the final results. Note that the task names are all lower-cased and if the task has more than one metric, you need to specify the major metric (used for taking the best validation trial) in the name (e.g., mnli, mnli-mm, mrpc/acc, mrpc/f1, qqp/acc, qqp/f1, sts-b/pearson, sts-b/spearman).

Using demonstrations with filtering

To use the filtering mechanism when using demonstrations, we need to first generate Sentence-BERT embeddings. To generate embeddings for datasets in our paper, you can directly run

bash tools/get_sbert_embedding.sh roberta-large

roberta-large can also be replaced by bert-base, bert-large, roberta-base and distilbert-base (see Sentence Transformers for details). See tools/get_sbert_embedding.sh and tools/get_sbert_embedding.py if you want to add more datasets.

After generating the embeddings (embeddings are saved as numpy files in the data folders), we can run the following commands to do prompt-based fine-tuning with demonstrations with filtering:

TAG=exp TYPE=prompt-demo TASK=SST-2 BS=2 LR=1e-5 SEED=42 MODEL=roberta-large bash run_experiment.sh "--demo_filter --demo_filter_model sbert-roberta-large"

Automatically searched prompt

We provide our automatic search results in auto_template and auto_label_mapping. There are three types of files:

  • SST-2/16-42.txt: Initial search results for SST-2 dataset, K=16 and SEED=42.
  • SST-2/16-42.sort.txt: Do prompt-based fine-tuning on initial results and sort them based on dev set performance.
  • SST-2/16-42.score.txt: Same as above, but with dev set scores.

To use the best automatic template (auto-T in the paper), use the following command:

TAG=exp TYPE=prompt-demo TASK=SST-2 BS=2 LR=1e-5 SEED=42 MODEL=roberta-large bash run_experiment.sh "--template_path auto_template/SST-2/16-42.sort.txt --template_id 0"

You can also use the i-th automatic result by specifying different template_id.

Similarly, to use automatic label (auto-L in the paper), use the following command:

TAG=exp TYPE=prompt-demo TASK=SST-2 BS=2 LR=1e-5 SEED=42 MODEL=roberta-large bash run_experiment.sh "--mapping_path auto_label_mapping/SST-2/16-42.sort.txt --mapping_id 0"

NOTE: Make sure to use the corresponding automatic search results with different data split seeds.

Our final results (LM-BFF) take prompt-based fine-tuning with demonstrations, filtering and automatic template, for example:

for seed in 13 21 42 87 100
do
    for bs in 2 4 8
    do
        for lr in 1e-5 2e-5 5e-5
        do
            TAG=LM-BFF \
            TYPE=prompt-demo \
            TASK=SST-2 \
            BS=$bs \
            LR=$lr \
            SEED=$seed \
            MODEL=roberta-large \
            bash run_experiment.sh "--template_path auto_template/SST-2/16-$seed.sort.txt --template_id 0 --demo_filter --demo_filter_model sbert-roberta-large"
        done
    done
done

python tools/gather_result.py --condition "{'tag': 'LM-BFF', 'task_name': 'sst-2', 'few_shot_type': 'prompt-demo'}"

Search for automatic templates

If you want to try automatically generating templates by yourself, here are the instructions. Note that it is an extremely long process :)

To get automatic templates, we first generate template candidates by using T5:

python tools/generate_template.py \
    --output_dir my_auto_template \
    --task_name SST-2 \
    --seed 13 21 42 87 100 \
    --t5_model t5-3b \
    --beam 100

Where --t5_model specifies the pre-trained T5 checkpoint to use and --beam specifies the beam search width. Note that t5-3b model will take approximately 15GB GPU memory, and if your GPU does not support it, you can try smaller T5 models (e.g., t5-base).

Then we do prompt-based fine-tuning of all the templates

for template_id in {0..99}
do
    for seed in 13 21 42 87 100
    do
        # To save time, we fix these hyper-parameters
        bs=8
        lr=1e-5

        # Since we only use dev performance here, use --no_predict to skip testing
        TAG=exp-template \
        TYPE=prompt \
        TASK=SST-2 \
        BS=$bs \
        LR=$lr \
        SEED=$seed \
        MODEL=roberta-large \
        bash run_experiment.sh "--template_path my_auto_template/SST-2/16-$seed.txt --template_id $template_id --no_predict"
    done
done

... and sort them based on dev set performance:

python tools/sort_template.py --condition "{'tag': 'exp-template', 'task_name': 'sst-2'}" --template_dir my_auto_template

The sorted results will be saved in my_auto_template, with the same format as described in Automatically searched prompt.

Search for automatic label word mappings

Similar to the process of automatic template search, we first generate candidate label word mappings by running:

bash tools/run_generate_labels.sh

You can modify the options in tools/run_generate_labels.sh to run this for different datasets or save mappings to different directories. After running the generation, the candidate label mappings will be saved in my_auto_label_mapping/manual_template.

Then we do prompt-based fine-tuning of all the mappings by:

for mapping_id in {0..99}
do
    for seed in 13 21 42 87 100
    do
        # To save time, we fix these hyper-parameters
        bs=8
        lr=1e-5

        # Since we only use dev performance here, use --no_predict to skip testing
        TAG=exp-mapping \
        TYPE=prompt \
        TASK=SST-2 \
        BS=$bs \
        LR=$lr \
        SEED=$seed \
        MODEL=roberta-large \
        bash run_experiment.sh "--mapping_path my_auto_label_mapping/manual_template/SST-2/16-$seed.txt --mapping_id $mapping_id --no_predict"
    done
done

... and sort them based on dev set performance:

python tools/sort_mapping.py --condition "{'tag': 'exp-mapping', 'task_name': 'sst-2'}" --mapping_dir my_auto_label_mapping/manual_template

The sorted results will be saved in my_auto_label_mapping/manual_template, with the same format as described in Automatically searched prompt.

Auto T + L: We can also do a joint search of templates and label word mappings following these steps:

  1. First, do the automatic template search following Search for automatic templates.
  2. The following steps are similar to automatic label mapping except a few arguments. When running tools/run_generate_labels.sh, change LOAD_TEMPLATES to true in it and the template + mapping candidates will be written in my_auto_label_mapping/auto_template
  3. For the following fine-tuning, change --mapping_path and --mapping_id to --prompt_path and --prompt_id.
  4. In the end, for re-ranking all the prompts, change tools/sort_mapping.py to tools/sort_prompt.py to get the final lists.

Ensemble model

First we need to train models with different templates:

mkdir ensemble_predict_results
for template_id in {0..19} # Use top 20 templates
do
    array_id=0
    for seed in 13 21 42 87 100
    do
        for bs in 2 4 8
        do
            for lr in 1e-5 2e-5 5e-5
            do
                TAG=exp-ensemble \
                TYPE=prompt-demo \
                TASK=SST-2 \
                BS=$bs \
                LR=$lr \
                SEED=$seed \
                MODEL=roberta-large \
                bash run_experiment.sh "--template_path auto_template/SST-2/16-$seed.sort.txt --template_id $template_id --model_id $template_id --array_id $array_id --save_logit --save_logit_dir ensemble_predict_results"

                array_id=$(expr $array_id + 1)
            done
        done
    done
done

Looks a little complicated? It's actually pretty easy to understand: --model_id and --array_id is used to distinguish different runs, and --save_logit tells the program to save the prediction results for ensemble.

After finishing the experiments, use the following command to get the ensemble results:

python tools/ensemble.py --condition "{'tag': 'exp-ensemble', 'task_name': 'sst-2', 'few_shot_type': 'prompt-demo'}" --n_models 20

where --n_models specify how many models you want to use for ensemble (should be kept the same as the number of templates you use in experiments).

Zero-shot experiments

It's easy to run zero-shot experiments: just add the --no_train argument:

TAG=zero-shot TYPE=prompt TASK=SST-2 BS=2 LR=1e-5 SEED=42 MODEL=roberta-large bash run_experiment.sh "--no_train"

To do "GPT-3 style" in-context learning:

TAG=gpt3-in-context TYPE=prompt-demo TASK=SST-2 BS=2 LR=1e-5 SEED=42 MODEL=roberta-large bash run_experiment.sh "--no_train --num_sample 1 --gpt3_in_context_head --gpt3_in_context_num 32 --truncate_head --use_full_length"

How to design your own templates

Here are two template examples:

For SST-2: *cls**sent_0*_It_was*mask*.*sep+* => [CLS] {S0} It was [MASK]. [SEP]

For MNLI: *cls**sent-_0*?*mask*,*+sentl_1**sep+* => [CLS] {S0}? [MASK], {S1} [SEP]

The template is composed of special tokens and variables (surrounded by *) and text (e.g., It_was, where space is replaced by _). Special tokens and variables contain:

  • *cls*, *sep*, *sep+* and *mask*: Special tokens of CLS, SEP and MASK (different for different pre-trained models and tokenizers). *sep+* means the contents before and after this token have different segment embeddings (only for BERT).
  • *sent_i*: The i-th sentence.
  • *sent-_i*: The i-th sentence, discarding the last character.
  • *sentl_i*: The i-th sentence, lower-casing the first letter.
  • *sentl-_i*: The i-th sentence, discarding the last character and lower-casing the first letter.
  • *+sent_i*: The i-th sentence, adding an extra space at the beginning.
  • *+sentl_i*: The i-th sentence, adding an extra space at the beginning and lower-casing the first letter.

Bugs or questions?

If you have any questions related to the code or the paper, feel free to email Tianyu ([email protected]). If you encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!

Citation

Please cite our paper if you use LM-BFF in your work:

@inproceedings{gao2021making,
   title={Making Pre-trained Language Models Better Few-shot Learners},
   author={Gao, Tianyu and Fisch, Adam and Chen, Danqi},
   booktitle={Association for Computational Linguistics (ACL)},
   year={2021}
}
Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 07, 2022
Tensorflow AffordanceNet and AffContext implementations

AffordanceNet and AffContext This is tensorflow AffordanceNet and AffContext implementations. Both are implemented and tested with tensorflow 2.3. The

Beatriz Pérez 6 Dec 01, 2022
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
Pytorch implementation of few-shot semantic image synthesis

Few-shot Semantic Image Synthesis Using StyleGAN Prior Our method can synthesize photorealistic images from dense or sparse semantic annotations using

40 Sep 26, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

CodingMan 45 Dec 12, 2022
Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019)

RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019) This repository contains python (3.5.2) implementation of

Doyup Lee 222 Dec 21, 2022
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

GANs for Biological Image Synthesis This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary m

Anton Osokin 95 Nov 25, 2022
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
This repository contains small projects related to Neural Networks and Deep Learning in general.

ILearnDeepLearning.py Description People say that nothing develops and teaches you like getting your hands dirty. This repository contains small proje

Piotr Skalski 1.2k Dec 22, 2022
The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines.

The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines. It includes tools for downloading pipelines and their dependencies and tools for measuring their performace

8 Dec 04, 2022
Hcpy - Interface with Home Connect appliances in Python

Interface with Home Connect appliances in Python This is a very, very beta inter

Trammell Hudson 116 Dec 27, 2022
[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Single Image Depth Prediction with Wavelet Decomposition Michaël Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambeto

Niantic Labs 205 Jan 02, 2023
This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".

L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated p

Jiaqi Gu 9 Jul 14, 2022
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 04, 2021
LeViT a Vision Transformer in ConvNet's Clothing for Faster Inference

LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference This repository contains PyTorch evaluation code, training code and pretrained

Facebook Research 504 Jan 02, 2023
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023