IhoneyBakFileScan Modify - 批量网站备份文件扫描器,增加文件规则,优化内存占用

Overview

ihoneyBakFileScan_Modify 批量网站备份文件泄露扫描工具

2022.2.8 添加、修改内容

增加备份文件fuzz规则

修改备份文件大小判断方式(pip3 install hurry-filesize)

修改备份文件是否存在的判断规则

修改为多线程扫描,内存占用更小

经测试 1h1g vps 500线程可以拉满

python3 ihoneyBakFileScan_Modify.py -t 500 -f url.txt

python3 requests pip3.5

1. 简介

1.1 网站备份文件泄露可能造成的危害:
1. 网站存在备份文件:网站存在备份文件,例如数据库备份文件、网站源码备份文件等,攻击者利用该信息可以更容易得到网站权限,导致网站被黑。
2. 敏感文件泄露是高危漏洞之一,敏感文件包括数据库配置信息,网站后台路径,物理路径泄露等,此漏洞可以帮助攻击者进一步攻击,敞开系统的大门。
3. 由于目标备份文件较大(xxx.G),可能存在更多敏感数据泄露
4. 该备份文件被下载后,可以被用来做代码审计,进而造成更大的危害
5. 该信息泄露会暴露服务器的敏感信息,使攻击者能够通过泄露的信息进行进一步入侵。
1.2 依赖环境
开发环境:
python3   python3.5.3
pip3.5    pip 10.0.1
requests  2.19.1
安装第三方依赖库:
pip3.5 install requests
pip3 install hurry-filesize
1.3 工具核心:
1. 常见后缀:
   * '.rar', '.zip', '.gz', '.sql.gz', '.tar.gz' ...
2. 文件头识别:
   * rar:526172211a0700cf9073
   * zip:504b0304140000000800
   * gz:1f8b080000000000000b,也包括'.sql.gz',取'1f8b0800' 作为keyword
   * tar.gz: 1f8b0800
   * sql:每种导出方式有不同的文件头
       * Adminer:  
       * mysqldump:     
       * phpMyAdmin:
       * navicat:   
3. 数据库备份导出方式识别:
   * 导出方式                      文件头字符:                    前10个16进制字符:
   * mysqldump:                   -- MySQL dump:               2d2d204d7953514c
   * phpMyAdmin:                  -- phpMyAdmin SQL Dump:      2d2d207068704d794164
   * navicat:                     /* Navicat :                 2f2a0a204e617669636174
   * Adminer:                     -- Adminer x.x.x MySQL dump: 2d2d2041646d696e6572  (5月9日新增xxx.sql)
   * Navicat MySQL Data Transfer: /* Navicat:                  2f2a0a4e617669636174
   * 一种未知导出方式:               -- -------:                  2d2d202d2d2d2d2d2d2d
4. 根据域名自动生成相关扫描字典:
    ➜  ihoneyBakFileScan python3.5 ihoneyBakFileScan.py -u https://www.ihoney.net.cn
    [ ] https://www.ihoney.net.cn/__zep__/js.zip
    [ ] https://www.ihoney.net.cn/faisunzip.zip
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.rar
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.rar
    [ ] https://www.ihoney.net.cn/ihoneynetcn.rar
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.rar
    [ ] https://www.ihoney.net.cn/www.rar
    [ ] https://www.ihoney.net.cn/ihoney.rar
    [*] https://www.ihoney.net.cn/www.ihoney.net.cn.zip  size:0M
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.zip
    [ ] https://www.ihoney.net.cn/ihoneynetcn.zip
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.zip
    [ ] https://www.ihoney.net.cn/www.zip
    [ ] https://www.ihoney.net.cn/ihoney.zip
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.gz
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.gz
    [ ] https://www.ihoney.net.cn/ihoneynetcn.gz
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.gz
    [ ] https://www.ihoney.net.cn/www.gz
    [ ] https://www.ihoney.net.cn/ihoney.gz
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.sql.gz
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.sql.gz
    [ ] https://www.ihoney.net.cn/ihoneynetcn.sql.gz
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.sql.gz
    [ ] https://www.ihoney.net.cn/www.sql.gz
    [ ] https://www.ihoney.net.cn/ihoney.sql.gz
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.tar.gz
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.tar.gz
    [ ] https://www.ihoney.net.cn/ihoneynetcn.tar.gz
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.tar.gz
    [ ] https://www.ihoney.net.cn/www.tar.gz
    [ ] https://www.ihoney.net.cn/ihoney.tar.gz
    [ ] https://www.ihoney.net.cn/www.ihoney.net.cn.sql
    [ ] https://www.ihoney.net.cn/wwwihoneynetcn.sql
    [ ] https://www.ihoney.net.cn/ihoneynetcn.sql
    [ ] https://www.ihoney.net.cn/ihoney.net.cn.sql
    [ ] https://www.ihoney.net.cn/www.sql
    [ ] https://www.ihoney.net.cn/ihoney.sql
5. 自动记录扫描成功的备份地址到以时间命名的文件
    例如 20180616_16-28-14.txt:
    https://www.ihoney.net.cn/ihoney.tar.gz  size:0M
    https://www.ihoney.net.cn/www.ihoney.net.cn.zip  size:0M

2. 使用方式

参数:
    -h --help      查看工具使用帮助
    -f --url-file  批量时指定存放url的文件,每行url需要指定http://或者https://,否则默认使用http://
    -t --thread    指定线程数,建议100
    -u --url       单个url扫描时指定url
    -d --dict-file 自定义扫描字典
使用:
    批量url扫描    python3.5 ihoneyBakFileScan.py -t 100 -f url.txt
    单个url扫描    python3.5 ihoneyBakFileScan.py -u https://www.ihoneysec.top/
                  python3.5 ihoneyBakFileScan.py -u www.ihoney.net.cn
                  python3.5 ihoneyBakFileScan.py -u www.ihoney.net.cn -d dict.txt

3. ChangeLog:

[2018.04.20]  首发T00ls:支持rar,zip后缀备份文件头识别,根据域名自动生成相关扫描字典,自动记录扫描成功的备份地址到文件
[2018.04.26]
              在原本扫描成功的备份地址后增加了备份大小,以方便快速识别有效备份。
              增加了.sql文件识别,也是识别文件头的方式,文件头我目前检测到三种,分别是不同方式导出的:1.mysql,2.phpmyadmin,3.navicat。
[2018.05.19]  新增识别Adminer导出的两种格式:baidu.sql、baodu.sql.gz
[2018.05.31]  新增Navicat MySQL Data Transfer备份导出方式和另一种未知导出方式
[2018.06.16]  修复支持https站扫描,并从旧项目中抽出来独立作为一个项目
[2018.06.18]  从多线程加队列改为多进程加进程池,提升扫描速度

4. 联系

* 在使用工具的过程中遇到任何异常、问题,或者你有更好的建议都可以联系作者,一起将这款不出名的小工具完善下去。
* 联系方式: QQ 102505481
2018年06月18日22:51:11
Owner
VMsec
专注渗透测试。
VMsec
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
A script depending on VASP output for calculating Fermi-Softness.

Fermi softness calculation for Vienna Ab initio Simulation Package (VASP) Update 1.1.0: Big update: Rewrote the code. Use Bader atomic division instea

qslin 11 Nov 08, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
利用Tensorflow实现基于CNN的中文短文本分类

Text Classification with CNN 使用卷积神经网络进行中文文本分类 CNN做句子分类的论文可以参看: Convolutional Neural Networks for Sentence Classification 还可以去读dennybritz大牛的博客:Implemen

Jeremiah 4 Nov 08, 2022
I3-master-layout - Simple master and stack layout script

Simple master and stack layout script | ------ | ----- | | | | | Ma

Tobias S 18 Dec 05, 2022
Code for Motion Representations for Articulated Animation paper

Motion Representations for Articulated Animation This repository contains the source code for the CVPR'2021 paper Motion Representations for Articulat

Snap Research 851 Jan 09, 2023
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning

A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning Website • About • Installation • Using OpenDR

OpenDR 304 Dec 28, 2022
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023
Bot developed in Python that automates races in pegaxy.

español | português About it: This is a fork from pega-racing-bot. This bot, developed in Python, is to automate races in pegaxy. The game developers

4 Apr 08, 2022
The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

SIGIR2021-EGLN The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization" Neural graph based Col

15 Dec 27, 2022
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022