A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

Related tags

Deep LearningELD
Overview

ELD

The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) version "Physics-based Noise Modeling for Extreme Low-light Photography". Interested readers are also referred to an insightful Note about this work in Zhihu (Chinese).

News

  • 2022/01/08: Major Update: Release the training code and other related items (including synthetic datasets, customized rawpy, calibrated camera noise parameters, baseline noise models, calibrated SonyA7S2 camera response function (CRF) and a modern implementation of EMoR radiometric calibration method) to accelerate further research!
  • 2022/01/05: Replace the released ELD dataset by my local version of the dataset. We thank @fenghansen for pointing this out. Please refer to this issue for more details.
  • 2021/08/05: The comprehensive version of this work was accepted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
  • 2020/07/16: Release the ELD dataset and our pretrained models at GoogleDrive and Baidudisk (0lby)

Highlights

  • We present a highly accurate noise formation model based on the characteristics of CMOS photosensors, thereby enabling us to synthesize realistic samples that better match the physics of image formation process.

  • To study the generalizability of a neural network trained with existing schemes, we introduce a new Extreme Low-light Denoising (ELD) dataset that covers four representative modern camera devices for evaluation purposes only. The image capture setup and example images are shown as below:

  • By training only with our synthetic data, we demonstrate a convolutional neural network can compete with or sometimes even outperform the network trained with paired real data under extreme low-light settings. The denoising results of networks trained with multiple schemes, i.e. 1) synthetic data generated by the poissonian-gaussian noise model, 2) paired read data of SID dataset and 3) synthetic data generated by our proposed noise model, are displayed as follows:

Prerequisites

  • Python >=3.6, PyTorch >= 1.6
  • Requirements: opencv-python, tensorboardX, lmdb, rawpy, torchinterp1d
  • Platforms: Ubuntu 16.04, cuda-10.1

Notice this codebase relies on my own customized rawpy, which provides more functionalities than the official one. This is released together with our datasets and the pretrained models. To build rawpy from source, please first compile and install the LibRaw library following the official instructions, then type pip install -e . in the rawpy directory.

Quick Start

Due to the business license, we are unable to to provide the noise model as well as the calibration method. Instead, we release our collected ELD dataset and our pretrained models to facilitate future research.

To reproduce our results presented in the paper (Table 1 and 2), please take a look at scripts/test_SID.sh and scripts/test_ELD.sh

Update: (2022-01-08) We release the training code and the synthetic datasets per the users' requests. The training scripts and the user instructions can be found in scripts/train.sh. Additionally, we provide the baseline noise models (G/G+P/G+P*) and the calibrated noise parameters for all cameras of ELD for training (see noise.py and train_syn.py), which could serve as a starting point to develop your own noise model.

We use lmdb to prepare datasets, please refer to util/lmdb_data.py to see how we generate datasets from SID. We also provide a new implementation of a classic radiometric calibration method EMoR, and utilize it to calibrate the CRF of SonyA7S2, which could be further used to simulate realistic on-board ISP as in the commercial SonyA7S2 camera.

ELD Dataset

The dataset capture protocol is shown as follow:

We choose three ISO settings (800, 1600, 3200) and four low light factors (x1, x10, x100, x200) to capture the dataset (x1/x10 is not used in our paper). Image ids 1, 6, 11, 16 represent the long-exposure reference images. Please refer to ELDEvalDataset class in data/sid_dataset.py for more details.

Citation

If you find our code helpful in your research or work please cite our paper.

@inproceedings{wei2020physics,
  title={A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising},
  author={Wei, Kaixuan and Fu, Ying and Yang, Jiaolong and Huang, Hua},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  year={2020},
}

@article{wei2021physics,
  title={Physics-based Noise Modeling for Extreme Low-light Photography},
  author={Wei, Kaixuan and Fu, Ying and Zheng, Yinqiang and Yang, Jiaolong},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021},
  publisher={IEEE}
}

Contact

If you find any problem, please feel free to contact me (kxwei at princeton.edu kaixuan_wei at bit.edu.cn). A brief self-introduction (including your name, affiliation and position) is required, if you would like to get an in-depth help from me. I'd be glad to talk with you if more information (e.g. your personal website link) is attached. Note I would not reply to any impolite/aggressive email that violates the above criteria.

Owner
Kaixuan Wei
PhD student at Princeton University. Previously I obtained BS and MS degrees from BIT and ever did research at Cambridge and MSRA.
Kaixuan Wei
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022
Age Progression/Regression by Conditional Adversarial Autoencoder

Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE) TensorFlow implementation of the algorithm in the paper Age Progression/Regre

Zhifei Zhang 603 Dec 22, 2022
Joint parameterization and fitting of stroke clusters

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Al

Dave Pagurek 44 Dec 01, 2022
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs

GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs [Paper, Slides, Video Talk] at USENIX OSDI'21 @inproceedings{GNNAdvisor, title=

YUKE WANG 47 Jan 03, 2023
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

60 Dec 22, 2022
Parasite: a tool allowing you to compress and decompress files, to reduce their size

🦠 Parasite 🦠 Parasite is a tool written in Python3 allowing you to "compress" any file, reducing its size. ⭐ Features ⭐ + Fast + Good optimization,

Billy 30 Nov 25, 2022
Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021) Introduction This is the official repository for the PyTorch implementation

165 Dec 07, 2022
🛠 All-in-one web-based IDE specialized for machine learning and data science.

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

Machine Learning Tooling 2.9k Jan 09, 2023
Benchmark for Answering Existential First Order Queries with Single Free Variable

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1

HKUST-KnowComp 14 Oct 24, 2022
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
PoseCamera is python based SDK for human pose estimation through RGB webcam.

PoseCamera PoseCamera is python based SDK for human pose estimation through RGB webcam. Install install posecamera package through pip pip install pos

WonderTree 7 Jul 20, 2021
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
Blender Add-On for slicing meshes with planes

MeshSlicer Blender Add-On for slicing meshes with multiple overlapping planes at once. This is a simple Blender addon to slice a silmple mesh with mul

52 Dec 12, 2022
Video Frame Interpolation with Transformer (CVPR2022)

VFIformer Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer Dependencies python = 3.8 pytorch = 1.8.0

DV Lab 63 Dec 16, 2022
Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers

Official TensorFlow implementation of the unsupervised reconstruction model using zero-Shot Learned Adversarial TransformERs (SLATER). (https://arxiv.

ICON Lab 22 Dec 22, 2022
Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Do pedestrians pay attention? Eye contact detection for autonomous driving Official implementation of the paper Do pedestrians pay attention? Eye cont

VITA lab at EPFL 26 Nov 02, 2022