(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Overview

Realistic evaluation of transductive few-shot learning

Introduction

This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evaluation of transductive few-shot learning". This is a framework that regroups all methods evaluated in our paper except for SIB and LR-ICI. Results provided in the paper can be reproduced with this repo. Code was developed under python 3.8.3 and pytorch 1.4.0.

1. Getting started

1.1 Quick installation (recommended) (Download datasets and models)

To download datasets and pre-trained models (checkpoints), follow instructions 1.1.1 to 1.1.2 of NeurIPS 2020 paper "TIM: Transductive Information Maximization" public implementation (https://github.com/mboudiaf/TIM)

1.1.1 Place datasets

Make sure to place the downloaded datasets (data/ folder) at the root of the directory.

1.1.2 Place models

Make sure to place the downloaded pre-trained models (checkpoints/ folder) at the root of the directory.

1.2 Manual installation

Follow instruction 1.2 of NeurIPS 2020 paper "TIM: Transductive Information Maximization" public implementation (https://github.com/mboudiaf/TIM) if facing issues with previous steps. Make sure to place data/ and checkpoints/ folders at the root of the directory.

2. Requirements

To install requirements:

conda create --name <env> --file requirements.txt

Where <env> is the name of your environment

3. Reproducing the main results

Before anything, activate the environment:

source activate <env>

3.1 Table 1 and 2 results in paper

Evaluation in a 5-shot scenario on mini-Imagenet using RN-18 as backbone (Table 1. in paper)

Method 1-shot 5-shot 10-shot 20-shot
SimpleShot 63.0 80.1 84.0 86.1
PT-MAP 60.1 (↓16.8) 67.1 (↓18.2) 68.8 (↓18.0) 70.4 (↓17.4)
LaplacianShot 65.4 (↓4.7) 81.6 (↓0.5) 84.1 (↓0.2) 86.0 (↑0.5)
BDCSPN 67.0 (↓2.4) 80.2 (↓1.8) 82.7 (↓1.4) 84.6 (↓1.1)
TIM 67.3 (↓4.5) 79.8 (↓4.1) 82.3 (↓3.8) 84.2 (↓3.7)
α-TIM 67.4 82.5 85.9 87.9

To reproduce the results from Table 1. and 2. in the paper, from the root of the directory execute this python command.

python3 -m src.main --base_config <path_to_base_config_file> --method_config <path_to_method_config_file> 

The <path_to_base_config_file> follows this hierarchy:

config/<balanced or dirichlet>/base_config/<resnet18 or wideres>/<mini or tiered or cub>/base_config.yaml

The <path_to_method_config_file> follows this hierarchy:

config/<balanced or dirichlet>/methods_config/<alpha_tim or baseline or baseline_pp or bdcspn or entropy_min or laplacianshot or protonet or pt_map or simpleshot or tim>.yaml

For instance, if you want to reproduce the results in the balanced setting on mini-Imagenet, using ResNet-18, with alpha-TIM method go to the root of the directory and execute:

python3 -m src.main --base_config config/balanced/base_config/resnet18/mini/base_config.yaml --method_config config/balanced/methods_config/alpha_tim.yaml

If you want to reproduce the results in the randomly balanced setting on mini-Imagenet, using ResNet-18, with alpha-TIM method go to the root of the directory and execute:

python3 -m src.main --base_config config/dirichlet/base_config/resnet18/mini/base_config.yaml --method_config config/dirichlet/methods_config/alpha_tim.yaml

Reusable data sampler module

One of our main contribution is our realistic task sampling method following Dirichlet's distribution. plot

Our realistic sampler can be found in sampler.py file. The sampler has been implemented following Pytorch's norms and in a way that it can be easily reused and integrated in other projects.

The following notebook exemple_realistic_sampler.ipynb is an exemple that shows how to initialize and use our realistic category sampler.

Contact

For further questions or details, reach out to Olivier Veilleux ([email protected])

Acknowledgements

Special thanks to the authors of NeurIPS 2020 paper "TIM: Transductive Information Maximization" (TIM) (https://github.com/mboudiaf/TIM) for publicly sharing their pre-trained models and their source code from which this repo was inspired from.

Owner
Olivier Veilleux
Olivier Veilleux
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

KazuhitoTakahashi 16 Oct 26, 2022
A Protein-RNA Interface Predictor Based on Semantics of Sequences

PRIP PRIP:A Protein-RNA Interface Predictor Based on Semantics of Sequences installation gensim==3.8.3 matplotlib==3.1.3 xgboost==1.3.3 prettytable==2

李优 0 Mar 25, 2022
Algorithms for outlier, adversarial and drift detection

Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d

Seldon 1.6k Dec 31, 2022
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
Open source hardware and software platform to build a small scale self driving car.

Donkeycar is minimalist and modular self driving library for Python. It is developed for hobbyists and students with a focus on allowing fast experimentation and easy community contributions.

Autorope 2.4k Jan 04, 2023
[EMNLP 2021] MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations

MuVER This repo contains the code and pre-trained model for our EMNLP 2021 paper: MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity

24 May 30, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
Dynamic Slimmable Network (CVPR 2021, Oral)

Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-

Changlin Li 197 Dec 09, 2022
Iran Open Source Hackathon

Iran Open Source Hackathon is an open-source hackathon (duh) with the aim of encouraging participation in open-source contribution amongst Iranian dev

OSS Hackathon 121 Dec 25, 2022
Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

TANG, shixiang 6 Nov 25, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models Code accompanying CVPR'20 paper of the same title. Paper lin

Alex Damian 7k Dec 30, 2022
Tutorial: Introduction to Graph Machine Learning, with Jupyter notebooks

GraphMLTutorialNLDL22 Tutorial NLDL22: Introduction to Graph Machine Learning, with Jupyter notebooks This tutorial takes place during the conference

UiT Machine Learning Group 3 Jan 10, 2022
A TensorFlow implementation of FCN-8s

FCN-8s implementation in TensorFlow Contents Overview Examples and demo video Dependencies How to use it Download pre-trained VGG-16 Overview This is

Pierluigi Ferrari 50 Aug 08, 2022
My personal code and solution to the Synacor Challenge from 2012 OSCON.

Synacor OSCON Challenge Solution (2012) This repository contains my code and solution to solve the Synacor OSCON 2012 Challenge. If you are interested

2 Mar 20, 2022
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes.

Polygon-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes. Section I. Description The codes a

xinzelee 226 Jan 05, 2023
Transfer Learning Shootout for PyTorch's model zoo (torchvision)

pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f

Alexander Hirner 169 Jun 29, 2022