BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese

Overview

Table of contents

  1. Introduction
  2. Using BARTpho with fairseq
  3. Using BARTpho with transformers
  4. Notes

BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese

Two BARTpho versions BARTpho-syllable and BARTpho-word are the first public large-scale monolingual sequence-to-sequence models pre-trained for Vietnamese. BARTpho uses the "large" architecture and pre-training scheme of the sequence-to-sequence denoising model BART, thus especially suitable for generative NLP tasks. Experiments on a downstream task of Vietnamese text summarization show that in both automatic and human evaluations, BARTpho outperforms the strong baseline mBART and improves the state-of-the-art.

The general architecture and experimental results of BARTpho can be found in our paper:

@article{bartpho,
title     = {{BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese}},
author    = {Nguyen Luong Tran and Duong Minh Le and Dat Quoc Nguyen},
journal   = {arXiv preprint},
volume    = {arXiv:2109.09701},
year      = {2021}
}

Please CITE our paper when BARTpho is used to help produce published results or incorporated into other software.

Using BARTpho in fairseq

Installation

There is an issue w.r.t. the encode function in the BART hub_interface, as discussed in this pull request https://github.com/pytorch/fairseq/pull/3905. While waiting for this pull request's approval, please install fairseq as follows:

git clone https://github.com/datquocnguyen/fairseq.git
cd fairseq
pip install --editable ./

Pre-trained models

Model #params Download Input text
BARTpho-syllable 396M fairseq-bartpho-syllable.zip Syllable level
BARTpho-word 420M fairseq-bartpho-word.zip Word level
  • unzip fairseq-bartpho-syllable.zip
  • unzip fairseq-bartpho-word.zip

Example usage

from fairseq.models.bart import BARTModel  

#Load BARTpho-syllable model:  
model_folder_path = '/PATH-TO-FOLDER/fairseq-bartpho-syllable/'  
spm_model_path = '/PATH-TO-FOLDER/fairseq-bartpho-syllable/sentence.bpe.model'  
bartpho_syllable = BARTModel.from_pretrained(model_folder_path, checkpoint_file='model.pt', bpe='sentencepiece', sentencepiece_model=spm_model_path).eval()
#Input syllable-level/raw text:  
sentence = 'Chúng tôi là những nghiên cứu viên.'  
#Apply SentencePiece to the input text
tokenIDs = bartpho_syllable.encode(sentence, add_if_not_exist=False)
#Extract features from BARTpho-syllable
last_layer_features = bartpho_syllable.extract_features(tokenIDs)

##Load BARTpho-word model:  
model_folder_path = '/PATH-TO-FOLDER/fairseq-bartpho-word/'  
bpe_codes_path = '/PATH-TO-FOLDER/fairseq-bartpho-word/bpe.codes'  
bartpho_word = BARTModel.from_pretrained(model_folder_path, checkpoint_file='model.pt', bpe='fastbpe', bpe_codes=bpe_codes_path).eval()
#Input word-level text:  
sentence = 'Chúng_tôi là những nghiên_cứu_viên .'  
#Apply BPE to the input text
tokenIDs = bartpho_word.encode(sentence, add_if_not_exist=False)
#Extract features from BARTpho-word
last_layer_features = bartpho_word.extract_features(tokenIDs)

Using BARTpho in transformers

Installation

  • Installation with pip (v4.12+): pip install transformers
  • Installing from source:
git clone https://github.com/huggingface/transformers.git
cd transformers
pip install -e .

Pre-trained models

Model #params Input text
vinai/bartpho-syllable 396M Syllable level
vinai/bartpho-word 420M Word level

Example usage

import torch
from transformers import AutoModel, AutoTokenizer

#BARTpho-syllable
syllable_tokenizer = AutoTokenizer.from_pretrained("vinai/bartpho-syllable", use_fast=False)
bartpho_syllable = AutoModel.from_pretrained("vinai/bartpho-syllable")
TXT = 'Chúng tôi là những nghiên cứu viên.'  
input_ids = syllable_tokenizer(TXT, return_tensors='pt')['input_ids']
features = bartpho_syllable(input_ids)

from transformers import MBartForConditionalGeneration
bartpho_syllable = MBartForConditionalGeneration.from_pretrained("vinai/bartpho-syllable")
TXT = 'Chúng tôi là <mask> nghiên cứu viên.'
input_ids = syllable_tokenizer(TXT, return_tensors='pt')['input_ids']
logits = bartpho_syllable(input_ids).logits
masked_index = (input_ids[0] == syllable_tokenizer.mask_token_id).nonzero().item()
probs = logits[0, masked_index].softmax(dim=0)
values, predictions = probs.topk(5)
print(syllable_tokenizer.decode(predictions).split())

#BARTpho-word
word_tokenizer = AutoTokenizer.from_pretrained("vinai/bartpho-word", use_fast=False)
bartpho_word = AutoModel.from_pretrained("vinai/bartpho-word")
TXT = 'Chúng_tôi là những nghiên_cứu_viên .'  
input_ids = word_tokenizer(TXT, return_tensors='pt')['input_ids']
features = bartpho_word(input_ids)

bartpho_word = MBartForConditionalGeneration.from_pretrained("vinai/bartpho-word")
TXT = 'Chúng_tôi là những <mask> .'
input_ids = word_tokenizer(TXT, return_tensors='pt')['input_ids']
logits = bartpho_word(input_ids).logits
masked_index = (input_ids[0] == word_tokenizer.mask_token_id).nonzero().item()
probs = logits[0, masked_index].softmax(dim=0)
values, predictions = probs.topk(5)
print(word_tokenizer.decode(predictions).split())
  • Following mBART, BARTpho uses the "large" architecture of BART with an additional layer-normalization layer on top of both the encoder and decoder. Thus, when converted to be used with transformers, BARTpho can be called via mBART-based classes.

Notes

  • Before fine-tuning BARTpho on a downstream task, users should perform Vietnamese tone normalization on the downstream task's data as this pre-process was also applied to the pre-training corpus. A Python script for Vietnamese tone normalization is available at HERE.
  • For BARTpho-word, users should use VnCoreNLP to segment input raw texts as it was used to perform both Vietnamese tone normalization and word segmentation on the pre-training corpus.

License

MIT License

Copyright (c) 2021 VinAI Research

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Owner
VinAI Research
VinAI Research
Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written form.

Neural G2P to portuguese language Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written for

fluz 11 Nov 16, 2022
DVC-NLP-Simple-usecase

dvc-NLP-simple-usecase DVC NLP project Reference repository: official reference repo DVC STUDIO MY View Bag of Words- Krish Naik TF-IDF- Krish Naik ST

SUNNY BHAVEEN CHANDRA 2 Oct 02, 2022
Tokenizer - Module python d'analyse syntaxique et de grammaire, tokenization

Tokenizer Le Tokenizer est un analyseur lexicale, il permet, comme Flex and Yacc par exemple, de tokenizer du code, c'est à dire transformer du code e

Manolo 1 Aug 15, 2022
Code for ACL 2021 main conference paper "Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances".

Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances This repository contains the code and pre-trained mode

ICTNLP 90 Dec 27, 2022
A Facebook Messenger Chatbot using NLP

A Facebook Messenger Chatbot using NLP This project is about creating a messenger chatbot using basic NLP techniques and models like Logistic Regressi

6 Nov 20, 2022
Code for Findings at EMNLP 2021 paper: "Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning"

Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning This repo is for Findings at EMNLP 2021 paper: Learn Cont

INK Lab @ USC 6 Sep 02, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

Plugin 3 Jan 12, 2022
This is a NLP based project to extract effective date of the contract from their text files.

Date-Extraction-from-Contracts This is a NLP based project to extract effective date of the contract from their text files. Problem statement This is

Sambhav Garg 1 Jan 26, 2022
LCG T-TEST USING EUCLIDEAN METHOD

This project has been created for statistical usage, purposing for determining ATL takers and nontakers using LCG ttest and Euclidean Method, especially for internal business case in Telkomsel.

2 Jan 21, 2022
Revisiting Pre-trained Models for Chinese Natural Language Processing (Findings of EMNLP 2020)

This repository contains the resources in our paper "Revisiting Pre-trained Models for Chinese Natural Language Processing", which will be published i

Yiming Cui 463 Dec 30, 2022
Optimal Transport Tools (OTT), A toolbox for all things Wasserstein.

Optimal Transport Tools (OTT), A toolbox for all things Wasserstein. See full documentation for detailed info on the toolbox. The goal of OTT is to pr

OTT-JAX 255 Dec 26, 2022
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.data: Generic data loaders, abstractions, and iterators for text (including vocabulary and word vecto

3.2k Dec 30, 2022
Words_And_Phrases - Just a repo for useful words and phrases that might come handy in some scenarios. Feel free to add yours

Words_And_Phrases Just a repo for useful words and phrases that might come handy in some scenarios. Feel free to add yours Abbreviations Abbreviation

Subhadeep Mandal 1 Feb 01, 2022
Conversational-AI-ChatBot - Intelligent ChatBot built with Microsoft's DialoGPT transformer to make conversations with human users!

Conversational AI ChatBot Intelligent ChatBot built with Microsoft's DialoGPT transformer to make conversations with human users! In this project? Thi

Rajkumar Lakshmanamoorthy 6 Nov 30, 2022
Code for Editing Factual Knowledge in Language Models

KnowledgeEditor Code for Editing Factual Knowledge in Language Models (https://arxiv.org/abs/2104.08164). @inproceedings{decao2021editing, title={Ed

Nicola De Cao 86 Nov 28, 2022
BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions

BERTopic BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable

Maarten Grootendorst 3.6k Jan 07, 2023
Machine learning classifiers to predict American Sign Language .

ASL-Classifiers American Sign Language (ASL) is a natural language that serves as the predominant sign language of Deaf communities in the United Stat

Tarek idrees 0 Feb 08, 2022
CATs: Semantic Correspondence with Transformers

CATs: Semantic Correspondence with Transformers For more information, check out the paper on [arXiv]. Training with different backbones and evaluation

74 Dec 10, 2021
Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products

Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products.

Leah Pathan Khan 2 Jan 12, 2022