Entity Disambiguation as text extraction (ACL 2022)

Overview

ExtEnD: Extractive Entity Disambiguation

Python Python PyTorch plugin: spacy Code style: black

This repository contains the code of ExtEnD: Extractive Entity Disambiguation, a novel approach to Entity Disambiguation (i.e. the task of linking a mention in context with its most suitable entity in a reference knowledge base) where we reformulate this task as a text extraction problem. This work was accepted at ACL 2022.

If you find our paper, code or framework useful, please reference this work in your paper:

@inproceedings{barba-etal-2021-extend,
    title = "{E}xt{E}n{D}: Extractive Entity Disambiguation",
    author = "Barba, Edoardo  and
      Procopio, Luigi  and
      Navigli, Roberto",
    booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics",
    month = may,
    year = "2022",
    address = "Online and Dublin, Ireland",
    publisher = "Association for Computational Linguistics",
}

ExtEnD Image

ExtEnD is built on top of the classy library. If you are interested in using this project, we recommend checking first its introduction, although it is not strictly required to train and use the models.

Finally, we also developed a few additional tools that make it simple to use and test ExtEnD models:

Setup the environment

Requirements:

  • Debian-based (e.g. Debian, Ubuntu, ...) system
  • conda installed

To quickly setup the environment to use ExtEnd/replicate our experiments, you can use the bash script setup.sh. The only requirements needed here is to have a Debian-based system (Debian, Ubuntu, ...) and conda installed.

bash setup.sh

Checkpoints

We release the following checkpoints:

Model Training Dataset Avg Score
Longformer Large AIDA 85.8

Once you have downloaded the files, untar them inside the experiments/ folder.

# move file to experiments folder
mv ~/Downloads/extend-longformer-large.tar.gz experiments/
# untar
tar -xf experiments/extend-longformer-large.tar.gz -C experiments/
rm experiments/extend-longformer-large.tar.gz

Data

All the datasets used to train and evaluate ExtEnD can be downloaded using the following script from the facebook GENRE repository.

We strongly recommend you organize them in the following structure under the data folder as it is used by several scripts in the project.

data
├── aida
│   ├── test.aida
│   ├── train.aida
│   └── validation.aida
└── out_of_domain
    ├── ace2004-test-kilt.ed
    ├── aquaint-test-kilt.ed
    ├── clueweb-test-kilt.ed
    ├── msnbc-test-kilt.ed
    └── wiki-test-kilt.ed

Training

To train a model from scratch, you just have to use the following command:

classy train qa <folder> -n my-model-name --profile aida-longformer-large-gam -pd extend

can be any folder containing exactly 3 files:

  • train.aida
  • validation.aida
  • test.aida

This is required to let classy automatically discover the dataset splits. For instance, to re-train our AIDA-only model:

classy train data/aida -n my-model-name --profile aida-longformer-large-gam -pd extend

Note that can be any folder, as long as:

  • it contains these 3 files
  • they are in the same format as the files in data/aida

So if you want to train on these different datasets, just create the corresponding directory and you are ready to go!

In case you want to modify some training hyperparameter, you just have to edit the aida-longformer-large-gam profile in the configurations/ folder. You can take a look to the modifiable parameters by adding the parameter --print to the training command. You can find more on this in classy official documentation.

Predict

You can use classy syntax to perform file prediction:

classy predict -pd extend file \
    experiments/extend-longformer-large \
    data/aida/test.aida \
    -o data/aida_test_predictions.aida

Evaluation

To evaluate a checkpoint, you can run the bash script scripts/full_evaluation.sh, passing its path as an input argument. This will evaluate the model provided against both AIDA and OOD resources.

# syntax: bash scripts/full_evaluation.sh <ckpt-path>
bash scripts/full_evaluation.sh experiments/extend-longformer-large/2021-10-22/09-11-39/checkpoints/best.ckpt

If you are interested in AIDA-only evaluation, you can use scripts/aida_evaluation.sh instead (same syntax).

Furthermore, you can evaluate the model on any dataset that respects the same format of the original ones with the following command:

classy evaluate \
    experiments/extend-longformer-large/2021-10-22/09-11-39/checkpoints/best.ckpt \
    data/aida/test.aida \
    -o data/aida_test_evaluation.txt \
    -pd extend

spaCy

You can also use ExtEnD with spaCy, allowing you to use our system with a seamless interface that tackles full end-to-end entity linking. To do so, you just need to have cloned the repo and run setup.sh to configure the environment. Then, you will be able to add extend as a custom component in the following way:

import spacy
from extend import spacy_component

nlp = spacy.load("en_core_web_sm")

extend_config = dict(
    checkpoint_path="<ckpt-path>",
    mentions_inventory_path="<inventory-path>",
    device=0,
    tokens_per_batch=4000,
)

nlp.add_pipe("extend", after="ner", config=extend_config)

input_sentence = "Japan began the defence of their title " \
                 "with a lucky 2-1 win against Syria " \
                 "in a championship match on Friday."

doc = nlp(input_sentence)

# [(Japan, Japan National Footbal Team), (Syria, Syria National Footbal Team)]
disambiguated_entities = [(ent.text, ent._.disambiguated_entity) for ent in doc.ents]

Where:

  • <ckpt-path> is the path to a pretrained checkpoint of extend that you can find in the Checkpoints section, and
  • <inventory-path> is the path to a file containing the mapping from mentions to the corresponding candidates.

We support two formats for <inventory-path>:

  • tsv:
    $ head -1 <inventory-path>
    Rome \[TAB\] Rome City \[TAB\] Rome Football Team \[TAB\] Roman Empire \[TAB\] ...
    That is, <inventory-path> is a tab-separated file where, for each row, we have the mention (Rome) followed by its possible entities.
  • sqlite: a sqlite3 database with a candidate table with two columns:
    • mention (text PRIMARY KEY)
    • entities (text). This must be a tab-separated list of the corresponding entities.

We release 6 possible pre-computed <inventory-path> that you could use (we recommend creating a folder data/inventories/ and placing the files downloaded there inside, e.g., = data/inventories/le-and-titov-2018-inventory.min-count-2.sqlite3):

Inventory Number of Mentions Source
le-and-titov-2018-inventory.min-count-2.tsv 12090972 Cleaned version of the candidate set released by Le and Titov (2018). We discard mentions whose count is less than 2.
[Recommended] le-and-titov-2018-inventory.min-count-2.sqlite3 12090972 Cleaned version of the candidate set released by Le and Titov (2018). We discard mentions whose count is less than 2.
le-and-titov-2018-inventory.tsv 21571265 The candidate set released by Le and Titov (2018)
le-and-titov-2018-inventory.sqlite3 21571265 The candidate set released by Le and Titov (2018)

Note that, as far as you respect either of these two formats, you can also create and use your own inventory!

Docker container

Finally, we also release a docker image running two services, a streamlit demo and a REST service:

$ docker run -p 22001:22001 -p 22002:22002 --rm -itd poccio/extend:1.0.1
<container id>

Now you can:

  • checkout the streamlit demo at http://127.0.0.1:22001/
  • invoke the REST service running at http://127.0.0.1:22002/ (http://127.0.0.1:22002/docs you can find the OpenAPI documentation):
    $ curl -X POST http://127.0.0.1:22002/ -H 'Content-Type: application/json' -d '[{"text": "Rome is in Italy"}]'
    [{"text":"Rome is in Italy","disambiguated_entities":[{"char_start":0,"char_end":4,"mention":"Rome","entity":"Rome"},{"char_start":11,"char_end":16,"mention":"Italy","entity":"Italy"}]}]

Acknowledgments

The authors gratefully acknowledge the support of the ERC Consolidator Grant MOUSSE No. 726487 under the European Union’s Horizon 2020 research and innovation programme.

This work was supported in part by the MIUR under grant “Dipartimenti di eccellenza 2018-2022” of the Department of Computer Science of the Sapienza University of Rome.

License

This work is under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.

Owner
Sapienza NLP group
The NLP group at the Sapienza University of Rome
Sapienza NLP group
Longformer: The Long-Document Transformer

Longformer Longformer and LongformerEncoderDecoder (LED) are pretrained transformer models for long documents. ***** New December 1st, 2020: Longforme

AI2 1.6k Dec 29, 2022
DELTA is a deep learning based natural language and speech processing platform.

DELTA - A DEep learning Language Technology plAtform What is DELTA? DELTA is a deep learning based end-to-end natural language and speech processing p

DELTA 1.5k Dec 26, 2022
A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. IMPORTANT: (30.08.2020) We moved our models

flair 12.3k Dec 31, 2022
Image2pcl - Enter the metaverse with 2D image to 3D projections

Image2PCL Enter the metaverse with 2D image to 3D projections! This is an implem

Benjamin Ho 0 Feb 05, 2022
A fast, efficient universal vector embedding utility package.

Magnitude: a fast, simple vector embedding utility library A feature-packed Python package and vector storage file format for utilizing vector embeddi

Plasticity 1.5k Jan 02, 2023
Code for the ACL 2021 paper "Structural Guidance for Transformer Language Models"

Structural Guidance for Transformer Language Models This repository accompanies the paper, Structural Guidance for Transformer Language Models, publis

International Business Machines 10 Dec 14, 2022
Huggingface Transformers + Adapters = ❤️

adapter-transformers A friendly fork of HuggingFace's Transformers, adding Adapters to PyTorch language models adapter-transformers is an extension of

AdapterHub 1.2k Jan 09, 2023
A collection of models for image - text generation in ACM MM 2021.

Bi-directional Image and Text Generation UMT-BITG (image & text generator) Unifying Multimodal Transformer for Bi-directional Image and Text Generatio

Multimedia Research 63 Oct 30, 2022
BERT-based Financial Question Answering System

BERT-based Financial Question Answering System In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-b

Bithiah Yuan 61 Sep 18, 2022
A BERT-based reverse dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. 김유빈 : 모델링 / 데이터 수집 / 프로젝트 설계 / back-end 김종윤 : 데이터 수집 / 프로젝트 설계 / front-end / back-end 임용

94 Dec 08, 2022
American Sign Language (ASL) to Text Converter

Signterpreter American Sign Language (ASL) to Text Converter Recommendations Although there is grayscale and gaussian blur, we recommend that you use

0 Feb 20, 2022
Simple and efficient RevNet-Library with DeepSpeed support

RevLib Simple and efficient RevNet-Library with DeepSpeed support Features Half the constant memory usage and faster than RevNet libraries Less memory

Lucas Nestler 112 Dec 05, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 159 Apr 04, 2022
Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS)

This repository is an implementation of Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS) with a vocoder that works in real-time. Feel free to check my the

Corentin Jemine 38.5k Jan 03, 2023
A toolkit for document-level event extraction, containing some SOTA model implementations

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker Source code for ACL-IJCNLP 2021 Long paper: Document-le

84 Dec 15, 2022
문장단위로 분절된 나무위키 데이터셋. Releases에서 다운로드 받거나, tfds-korean을 통해 다운로드 받으세요.

Namuwiki corpus 문장단위로 미리 분절된 나무위키 코퍼스. 목적이 LM등에서 사용하기 위한 데이터셋이라, 링크/이미지/테이블 등등이 잘려있습니다. 문장 단위 분절은 kss를 활용하였습니다. 라이선스는 나무위키에 명시된 바와 같이 CC BY-NC-SA 2.0

Jeong Ukjae 16 Apr 02, 2022
BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

303 Dec 17, 2022
The FinQA dataset from paper: FinQA: A Dataset of Numerical Reasoning over Financial Data

Data and code for EMNLP 2021 paper "FinQA: A Dataset of Numerical Reasoning over Financial Data"

Zhiyu Chen 114 Dec 29, 2022
Revisiting Pre-trained Models for Chinese Natural Language Processing (Findings of EMNLP 2020)

This repository contains the resources in our paper "Revisiting Pre-trained Models for Chinese Natural Language Processing", which will be published i

Yiming Cui 463 Dec 30, 2022
Multispeaker & Emotional TTS based on Tacotron 2 and Waveglow

This Repository contains a sample code for Tacotron 2, WaveGlow with multi-speaker, emotion embeddings together with a script for data preprocessing.

Ivan Didur 106 Jan 01, 2023