Entity Disambiguation as text extraction (ACL 2022)

Overview

ExtEnD: Extractive Entity Disambiguation

Python Python PyTorch plugin: spacy Code style: black

This repository contains the code of ExtEnD: Extractive Entity Disambiguation, a novel approach to Entity Disambiguation (i.e. the task of linking a mention in context with its most suitable entity in a reference knowledge base) where we reformulate this task as a text extraction problem. This work was accepted at ACL 2022.

If you find our paper, code or framework useful, please reference this work in your paper:

@inproceedings{barba-etal-2021-extend,
    title = "{E}xt{E}n{D}: Extractive Entity Disambiguation",
    author = "Barba, Edoardo  and
      Procopio, Luigi  and
      Navigli, Roberto",
    booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics",
    month = may,
    year = "2022",
    address = "Online and Dublin, Ireland",
    publisher = "Association for Computational Linguistics",
}

ExtEnD Image

ExtEnD is built on top of the classy library. If you are interested in using this project, we recommend checking first its introduction, although it is not strictly required to train and use the models.

Finally, we also developed a few additional tools that make it simple to use and test ExtEnD models:

Setup the environment

Requirements:

  • Debian-based (e.g. Debian, Ubuntu, ...) system
  • conda installed

To quickly setup the environment to use ExtEnd/replicate our experiments, you can use the bash script setup.sh. The only requirements needed here is to have a Debian-based system (Debian, Ubuntu, ...) and conda installed.

bash setup.sh

Checkpoints

We release the following checkpoints:

Model Training Dataset Avg Score
Longformer Large AIDA 85.8

Once you have downloaded the files, untar them inside the experiments/ folder.

# move file to experiments folder
mv ~/Downloads/extend-longformer-large.tar.gz experiments/
# untar
tar -xf experiments/extend-longformer-large.tar.gz -C experiments/
rm experiments/extend-longformer-large.tar.gz

Data

All the datasets used to train and evaluate ExtEnD can be downloaded using the following script from the facebook GENRE repository.

We strongly recommend you organize them in the following structure under the data folder as it is used by several scripts in the project.

data
├── aida
│   ├── test.aida
│   ├── train.aida
│   └── validation.aida
└── out_of_domain
    ├── ace2004-test-kilt.ed
    ├── aquaint-test-kilt.ed
    ├── clueweb-test-kilt.ed
    ├── msnbc-test-kilt.ed
    └── wiki-test-kilt.ed

Training

To train a model from scratch, you just have to use the following command:

classy train qa <folder> -n my-model-name --profile aida-longformer-large-gam -pd extend

can be any folder containing exactly 3 files:

  • train.aida
  • validation.aida
  • test.aida

This is required to let classy automatically discover the dataset splits. For instance, to re-train our AIDA-only model:

classy train data/aida -n my-model-name --profile aida-longformer-large-gam -pd extend

Note that can be any folder, as long as:

  • it contains these 3 files
  • they are in the same format as the files in data/aida

So if you want to train on these different datasets, just create the corresponding directory and you are ready to go!

In case you want to modify some training hyperparameter, you just have to edit the aida-longformer-large-gam profile in the configurations/ folder. You can take a look to the modifiable parameters by adding the parameter --print to the training command. You can find more on this in classy official documentation.

Predict

You can use classy syntax to perform file prediction:

classy predict -pd extend file \
    experiments/extend-longformer-large \
    data/aida/test.aida \
    -o data/aida_test_predictions.aida

Evaluation

To evaluate a checkpoint, you can run the bash script scripts/full_evaluation.sh, passing its path as an input argument. This will evaluate the model provided against both AIDA and OOD resources.

# syntax: bash scripts/full_evaluation.sh <ckpt-path>
bash scripts/full_evaluation.sh experiments/extend-longformer-large/2021-10-22/09-11-39/checkpoints/best.ckpt

If you are interested in AIDA-only evaluation, you can use scripts/aida_evaluation.sh instead (same syntax).

Furthermore, you can evaluate the model on any dataset that respects the same format of the original ones with the following command:

classy evaluate \
    experiments/extend-longformer-large/2021-10-22/09-11-39/checkpoints/best.ckpt \
    data/aida/test.aida \
    -o data/aida_test_evaluation.txt \
    -pd extend

spaCy

You can also use ExtEnD with spaCy, allowing you to use our system with a seamless interface that tackles full end-to-end entity linking. To do so, you just need to have cloned the repo and run setup.sh to configure the environment. Then, you will be able to add extend as a custom component in the following way:

import spacy
from extend import spacy_component

nlp = spacy.load("en_core_web_sm")

extend_config = dict(
    checkpoint_path="<ckpt-path>",
    mentions_inventory_path="<inventory-path>",
    device=0,
    tokens_per_batch=4000,
)

nlp.add_pipe("extend", after="ner", config=extend_config)

input_sentence = "Japan began the defence of their title " \
                 "with a lucky 2-1 win against Syria " \
                 "in a championship match on Friday."

doc = nlp(input_sentence)

# [(Japan, Japan National Footbal Team), (Syria, Syria National Footbal Team)]
disambiguated_entities = [(ent.text, ent._.disambiguated_entity) for ent in doc.ents]

Where:

  • <ckpt-path> is the path to a pretrained checkpoint of extend that you can find in the Checkpoints section, and
  • <inventory-path> is the path to a file containing the mapping from mentions to the corresponding candidates.

We support two formats for <inventory-path>:

  • tsv:
    $ head -1 <inventory-path>
    Rome \[TAB\] Rome City \[TAB\] Rome Football Team \[TAB\] Roman Empire \[TAB\] ...
    That is, <inventory-path> is a tab-separated file where, for each row, we have the mention (Rome) followed by its possible entities.
  • sqlite: a sqlite3 database with a candidate table with two columns:
    • mention (text PRIMARY KEY)
    • entities (text). This must be a tab-separated list of the corresponding entities.

We release 6 possible pre-computed <inventory-path> that you could use (we recommend creating a folder data/inventories/ and placing the files downloaded there inside, e.g., = data/inventories/le-and-titov-2018-inventory.min-count-2.sqlite3):

Inventory Number of Mentions Source
le-and-titov-2018-inventory.min-count-2.tsv 12090972 Cleaned version of the candidate set released by Le and Titov (2018). We discard mentions whose count is less than 2.
[Recommended] le-and-titov-2018-inventory.min-count-2.sqlite3 12090972 Cleaned version of the candidate set released by Le and Titov (2018). We discard mentions whose count is less than 2.
le-and-titov-2018-inventory.tsv 21571265 The candidate set released by Le and Titov (2018)
le-and-titov-2018-inventory.sqlite3 21571265 The candidate set released by Le and Titov (2018)

Note that, as far as you respect either of these two formats, you can also create and use your own inventory!

Docker container

Finally, we also release a docker image running two services, a streamlit demo and a REST service:

$ docker run -p 22001:22001 -p 22002:22002 --rm -itd poccio/extend:1.0.1
<container id>

Now you can:

  • checkout the streamlit demo at http://127.0.0.1:22001/
  • invoke the REST service running at http://127.0.0.1:22002/ (http://127.0.0.1:22002/docs you can find the OpenAPI documentation):
    $ curl -X POST http://127.0.0.1:22002/ -H 'Content-Type: application/json' -d '[{"text": "Rome is in Italy"}]'
    [{"text":"Rome is in Italy","disambiguated_entities":[{"char_start":0,"char_end":4,"mention":"Rome","entity":"Rome"},{"char_start":11,"char_end":16,"mention":"Italy","entity":"Italy"}]}]

Acknowledgments

The authors gratefully acknowledge the support of the ERC Consolidator Grant MOUSSE No. 726487 under the European Union’s Horizon 2020 research and innovation programme.

This work was supported in part by the MIUR under grant “Dipartimenti di eccellenza 2018-2022” of the Department of Computer Science of the Sapienza University of Rome.

License

This work is under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.

Owner
Sapienza NLP group
The NLP group at the Sapienza University of Rome
Sapienza NLP group
Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

CvarAdversarialRL Official code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning". Initial setup Create a virtual

Mathieu Godbout 1 Nov 19, 2021
A minimal Conformer ASR implementation adapted from ESPnet.

Conformer ASR A minimal Conformer ASR implementation adapted from ESPnet. Introduction I want to use the pre-trained English ASR model provided by ESP

Niu Zhe 3 Jan 24, 2022
초성 해석기 based on ko-BART

초성 해석기 개요 한국어 초성만으로 이루어진 문장을 입력하면, 완성된 문장을 예측하는 초성 해석기입니다. 초성: ㄴㄴ ㄴㄹ ㅈㅇㅎ 예측 문장: 나는 너를 좋아해 모델 모델은 SKT-AI에서 공개한 Ko-BART를 이용합니다. 데이터 문장 단위로 이루어진 아무 코퍼스나

Dawoon Jung 29 Oct 28, 2022
Multilingual word vectors in 78 languages

Aligning the fastText vectors of 78 languages Facebook recently open-sourced word vectors in 89 languages. However these vectors are monolingual; mean

Babylon Health 1.2k Dec 17, 2022
Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

Tao Lei 14 Dec 12, 2022
Chinese version of GPT2 training code, using BERT tokenizer.

GPT2-Chinese Description Chinese version of GPT2 training code, using BERT tokenizer or BPE tokenizer. It is based on the extremely awesome repository

Zeyao Du 5.6k Jan 04, 2023
मराठी भाषा वाचविण्याचा एक प्रयास. इंग्रजी ते मराठीचा शब्दकोश. An attempt to preserve the Marathi language. A lightweight and ad free English to Marathi thesaurus.

For English, scroll down मराठी शब्द मराठी भाषा वाचवण्यासाठी मी हा ओपन सोर्स प्रोजेक्ट सुरू केला आहे. माझ्या मते, आपली भाषा हळूहळू आणि कोणाचाही लक्षात

मुक्त स्त्रोत 20 Oct 11, 2022
Faster, modernized fork of the language identification tool langid.py

py3langid py3langid is a fork of the standalone language identification tool langid.py by Marco Lui. Original license: BSD-2-Clause. Fork license: BSD

Adrien Barbaresi 12 Nov 05, 2022
Switch spaces for knowledge graph embeddings

SwisE Switch spaces for knowledge graph embeddings. Requirements: python3 pytorch numpy tqdm Reproduce the results To reproduce the reported results,

Shuai Zhang 4 Dec 01, 2021
PyTorch Implementation of "Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging" (Findings of ACL 2022)

Feature_CRF_AE Feature_CRF_AE provides a implementation of Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging

Jacob Zhou 6 Apr 29, 2022
Crowd sourced training data for Rasa NLU models

NLU Training Data Crowd-sourced training data for the development and testing of Rasa NLU models. If you're interested in grabbing some data feel free

Rasa 169 Dec 26, 2022
Beyond the Imitation Game collaborative benchmark for enormous language models

BIG-bench 🪑 The Beyond the Imitation Game Benchmark (BIG-bench) will be a collaborative benchmark intended to probe large language models, and extrap

Google 1.3k Jan 01, 2023
This repository contains (not all) code from my project on Named Entity Recognition in philosophical text

NERphilosophy 👋 Welcome to the github repository of my BsC thesis. This repository contains (not all) code from my project on Named Entity Recognitio

Ruben 1 Jan 27, 2022
topic modeling on unstructured data in Space news articles retrieved from the Guardian (UK) newspaper using API

NLP Space News Topic Modeling Photos by nasa.gov (1, 2, 3, 4, 5) and extremetech.com Table of Contents Project Idea Data acquisition Primary data sour

edesz 1 Jan 03, 2022
Transformers Wav2Vec2 + Parlance's CTCDecodeTransformers Wav2Vec2 + Parlance's CTCDecode

🤗 Transformers Wav2Vec2 + Parlance's CTCDecode Introduction This repo shows how 🤗 Transformers can be used in combination with Parlance's ctcdecode

Patrick von Platen 9 Jul 21, 2022
New Modeling The Background CodeBase

Modeling the Background for Incremental Learning in Semantic Segmentation This is the updated official PyTorch implementation of our work: "Modeling t

Fabio Cermelli 9 Dec 28, 2022
Transformer training code for sequential tasks

Sequential Transformer This is a code for training Transformers on sequential tasks such as language modeling. Unlike the original Transformer archite

Meta Research 578 Dec 13, 2022
This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.

Laura 1 Jan 28, 2022
Gathers machine learning and Tensorflow deep learning models for NLP problems, 1.13 < Tensorflow < 2.0

NLP-Models-Tensorflow, Gathers machine learning and tensorflow deep learning models for NLP problems, code simplify inside Jupyter Notebooks 100%. Tab

HUSEIN ZOLKEPLI 1.7k Dec 30, 2022
(ACL-IJCNLP 2021) Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models.

BERT Convolutions Code for the paper Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models. Contains expe

mlpc-ucsd 21 Jul 18, 2022