PyTorch Implementation of Vector Quantized Variational AutoEncoders.

Overview

Pytorch implementation of VQVAE.

This paper combines 2 tricks:

  1. Vector Quantization (check out this amazing blog for better understanding.)
  2. Straight-Through (It solves the problem of back-propagation through discrete latent variables, which are intractable.)

architecture

This model has a neural network encoder and decoder, and a prior just like the vanila Variational AutoEncoder(VAE). But this model also has a latent embedding space called codebook(size: K x D). Here, K is the size of latent space and D is the dimension of each embedding e.

In vanilla variational autoencoders, the output from the encoder z(x) is used to parameterize a Normal/Gaussian distribution, which is sampled from to get a latent representation z of the input x using the 'reparameterization trick'. This latent representation is then passed to the decoder. However, In VQVAEs, z(x) is used as a "key" to do nearest neighbour lookup into the embedding codebook c, and get zq(x), the closest embedding in the space. This is called Vector Quantization(VQ) operation. Then, zq(x) is passed to the decoder, which reconstructs the input x. The decoder can either parameterize p(x|z) as the mean of Normal distribution using a transposed convolution layer like in vannila VAE, or it can autoregressively generate categorical distribution over [0,255] pixel values like PixelCNN. In this project, the first approach is used.

The loss function is combined of 3 components:

  1. Regular Reconstruction loss
  2. Vector Quantization loss
  3. Commitment loss

Vector Quantization loss encourages the items in the codebook to move closer to the encoder output ||sg[ze(x) - e||^2] and Commitment loss encourages the output of the encoder to be close to embedding it picked, to commit to its codebook embedding. ||ze(x) - sg[e]]||^2 . commitment loss is multiplied with a constant beta, which is 1.0 for this project. Here, sg means "stop-gradient". Which means we don't propagate the gradients with respect to that term.

Results:

The Model is trained on MNIST and CIFAR10 datasets.

Target 👉 Reconstructed Image


👉

👉

gif

Details:

  1. Trained models for MNIST and CIFAR10 are in the Trained models directory.
  2. Hidden size of the bottleneck(z) for MNIST and CIFAR10 is 128, 256 respectively.
Owner
Vrushank Changawala
Vrushank Changawala
codes for Self-paced Deep Regression Forests with Consideration on Ranking Fairness

Self-paced Deep Regression Forests with Consideration on Ranking Fairness This is official codes for paper Self-paced Deep Regression Forests with Con

Learning in Vision 4 Sep 11, 2022
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 02, 2023
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model SWAGAN: A Style-based Wavelet-driven Generative Model Rinon Gal, Dana

55 Dec 06, 2022
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

NLP From Scratch Without Large-Scale Pretraining This repository contains the code, pre-trained model checkpoints and curated datasets for our paper:

Xingcheng Yao 224 Dec 08, 2022
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]

Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi

Fangyin 58 Dec 26, 2022
Source code for Fixed-Point GAN for Cloud Detection

FCD: Fixed-Point GAN for Cloud Detection PyTorch source code of Nyborg & Assent (2020). Abstract The detection of clouds in satellite images is an ess

Joachim Nyborg 8 Dec 22, 2022
Implementation of the famous Image Manipulation\Forgery Detector "ManTraNet" in Pytorch

Who has never met a forged picture on the web ? No one ! Everyday we are constantly facing fake pictures touched up in Photoshop but it is not always

Rony Abecidan 77 Dec 16, 2022
Reinforcement Learning for Portfolio Management

qtrader Reinforcement Learning for Portfolio Management Why Reinforcement Learning? Learns the optimal action, rather than models the market. Adaptive

Angelos Filos 406 Jan 01, 2023
A PyTorch Implementation of FaceBoxes

FaceBoxes in PyTorch By Zisian Wong, Shifeng Zhang A PyTorch implementation of FaceBoxes: A CPU Real-time Face Detector with High Accuracy. The offici

Zi Sian Wong 797 Dec 17, 2022
Wikidated : An Evolving Knowledge Graph Dataset of Wikidata’s Revision History

Wikidated Wikidated 1.0 is a dataset of Wikidata’s full revision history, which encodes changes between Wikidata revisions as sets of deletions and ad

Lukas Schmelzeisen 11 Aug 16, 2022
Annotate with anyone, anywhere.

h h is the web app that serves most of the https://hypothes.is/ website, including the web annotations API at https://hypothes.is/api/. The Hypothesis

Hypothesis 2.6k Jan 08, 2023
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Deepak Nandwani 1 Dec 31, 2021
GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification

GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification This is the official pytorch implementation of t

Alibaba Cloud 5 Nov 14, 2022
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427

Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News

Jiawei Ren 267 Jan 01, 2023
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
Repository for open research on optimizers.

Open Optimizers Repository for open research on optimizers. This is a test in sharing research/exploration as it happens. If you use anything from thi

Ariel Ekgren 6 Jun 24, 2022
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022