Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

Overview

SentiBERT

Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/2005.04114

Model Architecture

Requirements

Environment

* Python == 3.6.10
* Pytorch == 1.1.0
* CUDA == 9.0.176
* NVIDIA GeForce GTX 1080 Ti
* HuggingFaces Pytorch (also known as pytorch-pretrained-bert & transformers)
* Stanford CoreNLP (stanford-corenlp-full-2018-10-05)
* Numpy, Pickle, Tqdm, Scipy, etc. (See requirements.txt)

Datasets

Datasets include:

* SST-phrase
* SST-5 (almost the same with SST-phrase)
* SST-3 (almost the same with SST-phrase)
* SST-2
* Twitter Sentiment Analysis (SemEval 2017 Task 4)
* EmoContext (SemEval 2019 Task 3)
* EmoInt (Joy, Fear, Sad, Anger) (SemEval 2018 Task 1c)

Note that there are no individual datasets for SST-5. When evaluating SST-phrase, the results for SST-5 should also appear.

File Architecture (Selected important files)

-- /examples/run_classifier_new.py                                  ---> start to train
-- /examples/run_classifier_dataset_utils_new.py                    ---> input preprocessed files to SentiBERT
-- /pytorch-pretrained-bert/modeling_new.py                         ---> detailed model architecture
-- /examples/lm_finetuning/pregenerate_training_data_sstphrase.py   ---> generate pretrained epochs
-- /examples/lm_finetuning/finetune_on_pregenerated_sstphrase.py    ---> pretrain on generated epochs
-- /preprocessing/xxx_st.py                                         ---> preprocess raw text and constituency tree
-- /datasets                                                        ---> datasets
-- /transformers (under construction)                               ---> RoBERTa part

Get Started

Preparing Environment

conda create -n sentibert python=3.6.10
conda activate sentibert

conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=9.0 -c pytorch

cd SentiBERT/

wget http://nlp.stanford.edu/software/stanford-corenlp-full-2018-10-05.zip
unzip stanford-corenlp-full-2018-10-05.zip

export PYTHONPATH=$PYTHONPATH:XX/SentiBERT/pytorch_pretrained_bert
export PYTHONPATH=$PYTHONPATH:XX/SentiBERT/
export PYTHONPATH=$PYTHONPATH:XX/

Preprocessing

  1. Split the raw text and golden labels of sentiment/emotion datasets into xxx_train\dev\test.txt and xxx_train\dev\test_label.npy, assuming that xxx represents task name.
  2. Obtain tree information. There are totally three situtations.
  • For tasks except SST-phrase, SST-2,3,5, put the files into xxx_train\test.txt files into /stanford-corenlp-full-2018-10-05/. To get binary sentiment constituency trees, please run
cd /stanford-corenlp-full-2018-10-05
java -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLP -annotators tokenize,ssplit,pos,parse,sentiment -file xxx_train\test.txt -outputFormat json -ssplit.eolonly true -tokenize.whitespace true

The tree information will be stored in /stanford-corenlp-full-2018-10-05/xxx_train\test.txt.json.

  • For SST-2, please use
cd /stanford-corenlp-full-2018-10-05
java -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLP -annotators tokenize,ssplit,pos,parse,sentiment -file sst2_train\dev_text.txt -outputFormat json -ssplit.eolonly true

The tree information will be stored in /stanford-corenlp-full-2018-10-05/sst2_train\dev_text.txt.json.

  • For SST-phrase and SST-3,5, the tree information was already stored in sstphrase_train\test.txt.
  1. Run /datasets/xxx/xxx_st.py to clean, and store the text and label information in xxx_train\dev\test_text_new.txt and xxx_label_train\dev\test.npy. It also transforms the tree structure into matrices /datasets/xxx/xxx_train\dev\test_span.npy and /datasets/xxx/xxx_train\dev\test_span_3.npy. The first matrix is used as the range of constituencies in the first layer of our attention mechanism. The second matrix is used as the indices of each constituency's children nodes or subwords and itself in the second layer. Specifically, for tasks other than EmoInt, SST-phrase, SST-5 and SST-3, the command is like below:
cd /preprocessing

python xxx_st.py \
        --data_dir /datasets/xxx/ \                         ---> the location where you want to store preprocessed text, label and tree information 
        --tree_dir /stanford-corenlp-full-2018-10-05/ \     ---> the location of unpreprocessed tree information (usually in Stanford CoreNLP repo)
        --stage train \                                     ---> "train", "test" or "dev"

For EmoInt, the command is shown below:

cd /preprocessing

python xxx_st.py \
        --data_dir /datasets/xxx/ \                         ---> the location where you want to store preprocessed text, label and tree information 
        --tree_dir /stanford-corenlp-full-2018-10-05/ \     ---> the location of unpreprocessed tree information (usually in Stanford CoreNLP repo)
        --stage train \                                     ---> "train" or "test"
        --domain joy                                        ---> "joy", "sad", "fear" or "anger". Used in EmoInt task

For SST-phrase, SST-5 and SST-3, since they already have tree information in sstphrase_train\test.txt. In this case, tree_dir should be /datasets/sstphrase/ or /datasets/sst-3/. The command is shown below:

cd /preprocessing

python xxx_st.py \
        --data_dir /datasets/xxx/ \                         ---> the location where you want to store preprocessed text, label and tree information 
        --tree_dir /datasets/xxx/ \                         ---> the location of unpreprocessed tree information    
        --stage train \                                     ---> "train" or "test"

Pretraining

  1. Generate epochs for preparation
cd /examples/lm_finetuning

python3 pregenerate_training_data_sstphrase.py \
        --train_corpus /datasets/sstphrase/sstphrase_train_text_new.txt \
        --data_dir /datasets/sstphrase/ \
        --bert_model bert-base-uncased \
        --do_lower_case \
        --output_dir /training_sstphrase \
        --epochs_to_generate 3 \
        --max_seq_len 128 \
  1. Pretrain the generated epochs
CUDA_VISIBLE_DEVICES=7 python3 finetune_on_pregenerated_sstphrase.py \
        --pregenerated_data /training_sstphrase \
        --bert_model bert-base-uncased \
        --do_lower_case \
        --output_dir /results/sstphrase_pretrain \
        --epochs 3

The pre-trained parameters were released here. [Google Drive]

Fine-tuning

Run run_classifier_new.py directly as follows:

cd /examples

CUDA_VISIBLE_DEVICES=7 python run_classifier_new.py \
  --task_name xxx \                              ---> task name
  --do_train \
  --do_eval \
  --do_lower_case \
  --data_dir /datasets/xxx \                     ---> the same name as task_name
  --pretrain_dir /results/sstphrase_pretrain \   ---> the location of pre-trained parameters
  --bert_model bert-base-uncased \
  --max_seq_length 128 \
  --train_batch_size xxx \
  --learning_rate xxx \
  --num_train_epochs xxx \                                                          
  --domain xxx \                                 ---> "joy", "sad", "fear" or "anger". Used in EmoInt task
  --output_dir /results/xxx \                    ---> the same name as task_name
  --seed xxx \
  --para xxx                                     ---> "sentibert" or "bert": pretrained SentiBERT or BERT

Checkpoints

For reproducity and usability, we provide checkpoints and the original training settings to help you reproduce: Link of overall result folder: [Google Drive]

The implementation details and results are shown below:

Note: 1) BERT denotes BERT w/ Mean pooling. 2) The results of subtasks in EmoInt is (Joy: 68.90, 65.18, 4 epochs), (Anger: 68.17, 66.73, 4 epochs), (Sad: 66.25, 63.08, 5 epochs), (Fear: 65.49, 64.79, 5 epochs), respectively.

Models Batch Size Learning Rate Epochs Seed Results
SST-phrase
SentiBERT 32 2e-5 5 30 **68.98**
BERT* 32 2e-5 5 30 65.22
SST-5
SentiBERT 32 2e-5 5 30 **56.04**
BERT* 32 2e-5 5 30 50.23
SST-2
SentiBERT 32 2e-5 1 30 **93.25**
BERT 32 2e-5 1 30 92.08
SST-3
SentiBERT 32 2e-5 5 77 **77.34**
BERT* 32 2e-5 5 77 73.35
EmoContext
SentiBERT 32 2e-5 1 0 **74.47**
BERT 32 2e-5 1 0 73.64
EmoInt
SentiBERT 16 2e-5 4 or 5 77 **67.20**
BERT 16 2e-5 4 or 5 77 64.95
Twitter
SentiBERT 32 6e-5 1 45 **70.2**
BERT 32 6e-5 1 45 69.7

Analysis

Here we provide analysis implementation in our paper. We will focus on the evaluation of

  • local difficulty
  • global difficulty
  • negation
  • contrastive relation

In preprocessing part, we provide implementation to extract related information in the test set of SST-phrase and store them in

-- /datasets/sstphrase/swap_test_new.npy                   ---> global difficulty
-- /datasets/sstphrase/edge_swap_test_new.npy              ---> local difficulty
-- /datasets/sstphrase/neg_new.npy                         ---> negation
-- /datasets/sstphrase/but_new.npy                         ---> contrastive relation

In simple_accuracy_phrase(), we will provide statistical details and evaluate for each metric.

Some of the analysis results based on our provided checkpoints are selected and shown below:

Models Results
Local Difficulty
SentiBERT **[85.39, 60.80, 49.40]**
BERT* [83.00, 55.54, 31.97]
Negation
SentiBERT **[78.45, 76.25, 70.56]**
BERT* [75.04, 71.40, 68.77]
Contrastive Relation
SentiBERT **39.87**
BERT* 28.48

Acknowledgement

Here we would like to thank for BERT/RoBERTa implementation of HuggingFace and sentiment tree parser of Stanford CoreNLP. Also, thanks for the dataset release of SemEval. To confirm the privacy rule of SemEval task organizer, we only choose the publicable datasets of each task.

Citation

Please cite our ACL paper if this repository inspired your work.

@inproceedings{yin2020sentibert,
  author    = {Yin, Da and Meng, Tao and Chang, Kai-Wei},
  title     = {{SentiBERT}: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics},
  booktitle = {Proceedings of the 58th Conference of the Association for Computational Linguistics, {ACL} 2020, Seattle, USA},
  year      = {2020},
}

Contact

  • Due to the difference of environment, the results will be a bit different. If you have any questions regarding the code, please create an issue or contact the owner of this repository.
Owner
Da Yin
Da Yin
Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach

Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach Thanh Luan Nguyen, Tri Nhu Do, Georges Kaddoum

Thanh Luan Nguyen 2 Oct 10, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 93 Aug 17, 2022
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
Integrated physics-based and ligand-based modeling.

ComBind ComBind integrates data-driven modeling and physics-based docking for improved binding pose prediction and binding affinity prediction. Given

Dror Lab 44 Oct 26, 2022
Details about the wide minima density hypothesis and metrics to compute width of a minima

wide-minima-density-hypothesis Details about the wide minima density hypothesis and metrics to compute width of a minima This repo presents the wide m

Nikhil Iyer 9 Dec 27, 2022
Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.

torchtyping Type annotations for a tensor's shape, dtype, names, ... Turn this: def batch_outer_product(x: torch.Tensor, y: torch.Tensor) - torch.Ten

Patrick Kidger 1.2k Jan 03, 2023
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.

Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la

Pedro Herrero-Vidal 3 Jul 12, 2022
An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and Machine Learning.

ALgorithmic_Trading_with_ML An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and

1 Mar 14, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi 5.1k Dec 30, 2022
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022
Pytorch implementation of Cut-Thumbnail in the paper Cut-Thumbnail:A Novel Data Augmentation for Convolutional Neural Network.

Cut-Thumbnail (Accepted at ACM MULTIMEDIA 2021) Tianshu Xie, Xuan Cheng, Xiaomin Wang, Minghui Liu, Jiali Deng, Tao Zhou, Ming Liu This is the officia

3 Apr 12, 2022
Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet) By Lele Chen , Ross K Maddox, Zhiyao Duan, Chenliang Xu. Unive

Lele Chen 218 Dec 27, 2022
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022
Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks.

The Lottery Ticket Hypothesis for Pre-trained BERT Networks Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks. [NeurIPS

VITA 122 Dec 14, 2022