HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.

Overview

HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.
中文介绍

Features

  • Non-intrusive. Your iOS project does not need to be modified
  • All commands support real device and simulator
  • All commands support Objective-C and Swift project
  • Some commands provide interactive UI within the APP

Requirements

  • Xcode 12.3
  • 64-bit simulator or real device, iOS 9.0+
  • Debug configuration (or Optimization Level set [-O0]/[-Onone])

Installation

  1. Download all the files. I recommend cloning the repository.
  2. Open up (or create) ~/.lldbinit file, and append the following lines to the end of the file:
command script import /path/to/HMLLDB.py

For example, the command in my computer:
command script import /Users/pal/Desktop/gitProjects/HMLLDB/commands/HMLLDB.py

  1. Restart Xcode, run your own iOS project, click Pause program execution to enter the LLDB debugging mode, enter the command help, if you see the commands described below, the installation is successful.

Commands

Command Description
deletefile Delete the specified file in the sandbox
pbundlepath Print the path of the main bundle
phomedirectory Print the path of the home directory("~")
fclass Find the class containing the input name(Case insensitive)
fsubclass Find the subclass of the input
fsuperclass Find the superclass of the input
fmethod Find the specified method in the method list, you can also find the method list of the specified class
methods Execute [inputClass _methodDescription] or [inputClass _shortMethodDescription]
properties Execute [inputClass _propertyDescription]
ivars Execute [instance _ivarDescription]
plifecycle Print life cycle of UIViewController
redirect Redirect stdout/stderr
push Find UINavigationController in keyWindow then push a specified UIViewController
showhud Display the debug HUD on the key window, it is showing the memory usage, CPU utilization and FPS of the main thread
sandbox Presenting a sandbox browser that can share and delete files
inspect Inspect UIView
environment Show diagnostic environment.
...

All commands in the table can use help <command> to view the syntax and examples. For example, the output of help fmethod:

(lldb) help fmethod
     Find the method.  Expects 'raw' input (see 'help raw-input'.)

Syntax: fmethod

    Syntax:
        fmethod <methodName>  (Case insensitive.)
        fmethod [--class] <className>

    Options:
        --class/-c; Find all method in the class

    Examples:
        (lldb) fmethod viewdid
        (lldb) fmethod viewDidLayoutSubviews
        (lldb) fmethod -c UITableViewController

    This command is implemented in HMClassInfoCommands.py

Example

Some examples use the demo in the Kingfisher project.
It is recommended to click Pause program execution to enter the LLDB debugging mode to execute commands, instead of executing commands by hitting breakpoints.

deletefile

It is recommended to re-run the project after executing the command, because some data is still in the memory.

# Delete all file in the sandbox
(lldb) deletefile -a

# Delete the "~/Documents" directory
(lldb) deletefile -d

# Delete the "~/Library" directory
(lldb) deletefile -l

# Delete the "~/tmp" directory
(lldb) deletefile -t

# Delete the "~/Library/Caches" directory
(lldb) deletefile -c

# Delete the "~Library/Preferences" directory
(lldb) deletefile -p

# Delete the specified file or directory
(lldb) deletefile -f path/to/fileOrDirectory

pbundlepath & phomedirectory

# Print the path of the main bundle
(lldb) pbundlepath
[HMLLDB] /Users/pal/Library/Developer/CoreSimulator/Devices/D90D74C6-DBDF-4976-8BEF-E7BA549F8A89/data/Containers/Bundle/Application/84AE808C-6703-488D-86A2-C90004434D3A/Kingfisher-Demo.app

# Print the path of the home directory
(lldb) phomedirectory
[HMLLDB] /Users/pal/Library/Developer/CoreSimulator/Devices/D90D74C6-DBDF-4976-8BEF-E7BA549F8A89/data/Containers/Data/Application/3F3DF0CD-7B57-4E69-9F15-EB4CCA7C4DD8

# If it is running on the simulator, you can add the -o option to open path with Finder
(lldb) pbundlepath -o
(lldb) phomedirectory -o

fclass & fsubclass & fsuperclass & fmethod

These commands are optimized for Swift, and the namespace can be omitted when entering the Swift class.

fclass: Find all class names that contain the specified string.

(lldb) fclass NormalLoadingViewController
[HMLLDB] Waiting...
[HMLLDB] Count: 1 
Kingfisher_Demo.NormalLoadingViewController (0x102148fa8)

# Case insensitive
(lldb) fclass Kingfisher_Demo.im
[HMLLDB] Waiting...
[HMLLDB] Count: 2 
Kingfisher_Demo.ImageDataProviderCollectionViewController (0x102149a18)
Kingfisher_Demo.ImageCollectionViewCell (0x1021498e8)

fsubclass: Find all subclasses of a class.

(lldb) fsubclass UICollectionViewController
[HMLLDB] Waiting...
[HMLLDB] Subclass count: 10 
Kingfisher_Demo.InfinityCollectionViewController
Kingfisher_Demo.HighResolutionCollectionViewController
...

fsuperclass: Find the super class of a class.

(lldb) fsuperclass UIButton
[HMLLDB] UIButton : UIControl : UIView : UIResponder : NSObject

(lldb) fsuperclass KingfisherManager
[HMLLDB] Kingfisher.KingfisherManager : Swift._SwiftObject

fmethod: Find the specified method in the method list, you can also find the method list of the specified class.

# Find the specified method in the method list. Case insensitive.
(lldb) fmethod viewdidload
[HMLLDB] Waiting...
[HMLLDB] Methods count: 158 
(-) playbackControlsViewDidLoad:
	Type encoding:[email protected]:[email protected]
	Class:AVPlaybackControlsController
(-) turboModePlaybackControlsPlaceholderViewDidLoad:
	Type encoding:[email protected]:[email protected]
	Class:AVPlaybackControlsController
(-) viewDidLoad
	Type encoding:[email protected]:8
	Class:AVNewsWidgetPlayerBehaviorContext
...

# Option -c: Find the method list of the specified class. Case sensitive.
(lldb) fmethod -c ImageCache
[HMLLDB] Waiting...
[HMLLDB] Class: Kingfisher.ImageCache (0x10264c6f8)
Instance methods count: 3. Class method count: 0.
(-) cleanExpiredDiskCache
	Type encoding:[email protected]:8
(-) backgroundCleanExpiredDiskCache
	Type encoding:[email protected]:8
(-) clearMemoryCache
	Type encoding:[email protected]:8

methods & properties & ivars

methods: Execute [inputClass _methodDescription] or [inputClass _shortMethodDescription] properties: Execute [inputClass _propertyDescription] ivars: Execute [instance _ivarDescription]

These commands are optimized for Swift, and the namespace can be omitted when entering the Swift class.

# Syntax
methods [--short] <className/classInstance>
properties <className/classInstance>
ivars <Instance>

(lldb) methods NormalLoadingViewController
[HMLLDB] <Kingfisher_Demo.NormalLoadingViewController: 0x10d55ffa8>:
in Kingfisher_Demo.NormalLoadingViewController:
	Instance Methods:
		- (id) collectionView:(id)arg1 cellForItemAtIndexPath:(id)arg2; (0x10d523f30)
		- (long) collectionView:(id)arg1 numberOfItemsInSection:(long)arg2; (0x10d522a20)
		- (void) collectionView:(id)arg1 willDisplayCell:(id)arg2 forItemAtIndexPath:(id)arg3; (0x10d523af0)
		- (void) collectionView:(id)arg1 didEndDisplayingCell:(id)arg2 forItemAtIndexPath:(id)arg3; (0x10d522cb0)
		- (id) initWithCoder:(id)arg1; (0x10d522960)
...

# These commands can only be used for subclasses of NSObject
(lldb) methods KingfisherManager
[HMLLDB] KingfisherManager is not a subclass of NSObject

plifecycle

Used to print the life cycle of UIViewController.
In a non-intrusive way, and Xcode can set the console font color to make it clearer. It has become one of my favorite commands.

Usage:

  1. Create a Symbolic Breakpoint, and then add the method to be printed in the Symbol line.(e.g. -[UIViewController viewDidAppear:])
  2. Add a Action(Debugger Command), enter the plifecycle command
  3. Check the option: Automatically continue after evaluating actions

I usually use the -i option to ignore some system-generated UIViewController. img1

I often Enable viewDidAppear: and dealloc methods, and the other methods are set to Disable and started on demand, as shown below: img2

Output in Xcode: img3

It should be noted that there are two problems with this command.

  1. Cause UIViewController switching lag.
  2. The following warning may be triggered when starting the APP. You need to click Continue program execution in Xcode to let the APP continue to run.
Warning: hit breakpoint while running function, skipping commands and conditions to prevent recursion.

BTW, the source code provides other ways to use LLDB to print the life cycle.

redirect

Redirect stdout/stder.

# You can redirect the output of Xcode to Terminal if you use the simulator
# Open the terminal, enter the "tty" command, you can get the path: /dev/ttys000
(lldb) redirect both /dev/ttys000
[HMLLDB] redirect stdout successful
[HMLLDB] redirect stderr successful

push

Find UINavigationController in keyWindow then push a specified UIViewController.
Notice: push MyViewController needs to execute [[MyViewController alloc] init] first. If the initializer of the class requires parameters, or the class needs to pass parameters after initialization, this command may cause errors.
The GIF demo didn't use Kingfisher because the UIViewController in the demo depends on the storyboard.
img4

showhud

Display the debug HUD on the keyWindow, it is showing the memory usage, CPU utilization and FPS of the main thread. img5

Tapping the debug HUD will present a new view controller, and its function will be introduced later. img6

sandbox

Presenting a sandbox browser that can share and delete files.
It takes a few seconds to call the command for the first time. img7

inspect

Inspect UIView of the current page.
img8

environment

Show diagnostic environment.
You can see that one of items is [Git commit hash], which is one of the reasons why clone repository is recommended.

(lldb) environment
[HMLLDB] [Python version] 3.8.2 (default, Nov  4 2020, 21:23:28) 
		[Clang 12.0.0 (clang-1200.0.32.28)]
[HMLLDB] [LLDB version] lldb-1200.0.44.2
		Apple Swift version 5.3.2 (swiftlang-1200.0.45 clang-1200.0.32.28)
[HMLLDB] [Target triple] x86_64h-apple-ios-simulator
[HMLLDB] [Git commit hash] 088f654cb158ffb16019b2deca5dce36256837ad
[HMLLDB] [Optimized] False: 28  True: 0
[HMLLDB] [Xcode version] 1230
[HMLLDB] [Xcode build version] 12C33
[HMLLDB] [Model identifier] x86_64
[HMLLDB] [System version] iOS 13.0

If an error occurs

Just-in-time compilation via LLDB is not stable. If an error occurs, please check in order according to the following steps.

  1. pull the latest code. Check the Xcode version, HMLLDB generally only adapts to the latest Xcode version.
  2. Open the ~/.lldbinit file and make sure to import the HMLLDB.py at the end of the file so that its commands are not overwritten.
  3. After launching the APP, click Pause program execution to enter the LLDB debugging mode to execute commands, instead of executing commands by hitting breakpoints. (In general, you can execute commands by hitting breakpoints)
  4. Restart Xcode can solve most problems.
  5. Restart the computer.
  6. After completing the above steps, the command still fails. Please copy the error and post it to Issue, and execute the environment command, its output should also be posted to Issue.

License

HMLLDB is released under the MIT license. See LICENSE for details.

Owner
mao2020
iOS Developer
mao2020
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions

Natural Posterior Network This repository provides the official implementation o

Oliver Borchert 54 Dec 06, 2022
Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

174 Dec 19, 2022
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Tensorflow implementation of Semi-supervised Sequence Learning (https://arxiv.org/abs/1511.01432)

Transfer Learning for Text Classification with Tensorflow Tensorflow implementation of Semi-supervised Sequence Learning(https://arxiv.org/abs/1511.01

DONGJUN LEE 82 Oct 22, 2022
Code for our CVPR 2022 Paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection"

GEN-VLKT Code for our CVPR 2022 paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection". Contributed by Yue Lia

Yue Liao 47 Dec 04, 2022
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
TransPrompt - Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification

TransPrompt This code is implement for our EMNLP 2021's paper 《TransPrompt:Towards an Automatic Transferable Prompting Framework for Few-shot Text Cla

WangJianing 23 Dec 21, 2022
IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID,

Intermediate Domain Module (IDM) This repository is the official implementation for IDM: An Intermediate Domain Module for Domain Adaptive Person Re-I

Yongxing Dai 87 Nov 22, 2022
A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking

PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking PoseRBPF Paper Self-supervision Paper Pose Estimation Video Robot Manipulati

NVIDIA Research Projects 107 Dec 25, 2022
Elastic weight consolidation technique for incremental learning.

Overcoming-Catastrophic-forgetting-in-Neural-Networks Elastic weight consolidation technique for incremental learning. About Use this API if you dont

Shivam Saboo 89 Dec 22, 2022
Differentiable Simulation of Soft Multi-body Systems

Differentiable Simulation of Soft Multi-body Systems Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, Ming C. Lin [Paper] [Code] Updates The C++ backend s

YilingQiao 26 Dec 23, 2022
NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.

#NeuralTalk Warning: Deprecated. Hi there, this code is now quite old and inefficient, and now deprecated. I am leaving it on Github for educational p

Andrej 5.3k Jan 07, 2023
Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset Official repository of the paper Privacy-friendly Synthetic Data for the Development

10 Dec 12, 2022
一个运行在 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 或 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 等定时面板的签到项目

定时面板上的签到盒 一个运行在 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 或 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 等定时面板的签到项目 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 特别声明 本仓库发布的脚本及其中涉及的任何解锁和解密分析脚本,仅用于测试和学习研究,禁止用于商业用途,不能保证其合

Leon 1.1k Dec 30, 2022
Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments Paper: arXiv (ICRA 2021) Video : https://youtu.be/CC

Sachini Herath 68 Jan 03, 2023
This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"

Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F

Asutosh Nayak 136 Dec 28, 2022
Code for Multimodal Neural SLAM for Interactive Instruction Following

Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p

7 Dec 07, 2022
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022