ThinkTwice: A Two-Stage Method for Long-Text Machine Reading Comprehension

Overview

ThinkTwice

ThinkTwice is a retriever-reader architecture for solving long-text machine reading comprehension. It is based on the paper: ThinkTwice: A Two-Stage Method for Long-Text Machine Reading Comprehension. Authors are Mengxing Dong, Bowei Zou, Jin Qian, Rongtao Huang and Yu Hong from Soochow University and Institute for Infocomm Research. The paper will be published in NLPCC 2021 soon.

Contents

Background

Our idea is mainly inspired by the way humans think: We first read a lengthy document and remain several slices which are important to our task in our mind; then we are gonna capture the final answer within this limited information.

The goals for this repository are:

  1. A complete code for NewsQA. This repo offers an implement for dealing with long text MRC dataset NewsQA; you can also try this method on other datsets like TriviaQA, Natural Questions yourself.
  2. A comparison description. The performance on ThinkTwice has been listed in the paper.
  3. A public space for advice. You are welcomed to propose an issue in this repo.

Requirements

Clone this repo at your local server. Install necessary libraries listed below.

git clone [email protected]:Walle1493/ThinkTwice.git
pip install requirements.txt

You may install several libraries on yourself.

Dataset

You need to prepare data in a squad2-like format. Since NewsQA (click here seeing more) is similar to SQuAD-2.0, we don't offer the script in this repo. The demo data format is showed below:

"version": "1",
"data": [
    {
        "type": "train",
        "title": "./cnn/stories/42d01e187213e86f5fe617fe32e716ff7fa3afc4.story",
        "paragraphs": [
            {
                "context": "NEW DELHI, India (CNN) -- A high court in northern India on Friday acquitted a wealthy...",
                "qas": [
                    {
                        "question": "What was the amount of children murdered?",
                        "id": "./cnn/stories/42d01e187213e86f5fe617fe32e716ff7fa3afc4.story01",
                        "answers": [
                            {
                                "answer_start": 294,
                                "text": "19"
                            }
                        ],
                        "is_impossible": false
                    },
                    {
                        "question": "When was Pandher sentenced to death?",
                        "id": "./cnn/stories/42d01e187213e86f5fe617fe32e716ff7fa3afc4.story02",
                        "answers": [
                            {
                                "answer_start": 261,
                                "text": "February"
                            }
                        ],
                        "is_impossible": false
                    }
                ]
            }
        ]
    }
]

P.S.: You are supposed to make a change when dealing with other datasets like TriviaQA or Natural Questions, because we split passages by '\n' character in NewsQA, while not all the same in other datasets.

Train

The training step (including test module) depends mainly on these parameters. We trained our two-stage model on 4 GPUs with 12G 1080Ti in 60 hours.

python code/main.py \
  --do_train \
  --do_eval \
  --eval_test \
  --model bert-base-uncased \
  --train_file ~/Data/newsqa/newsqa-squad2-dataset/squad-newsqa-train.json \
  --dev_file ~/Data/newsqa/newsqa-squad2-dataset/squad-newsqa-dev.json \
  --test_file ~/Data/newsqa/newsqa-squad2-dataset/squad-newsqa-test.json \
  --train_batch_size 256 \
  --train_batch_size_2 24 \
  --eval_batch_size 32  \
  --learning_rate 2e-5 \
  --num_train_epochs 1 \
  --num_train_epochs_2 3 \
  --max_seq_length 128 \
  --max_seq_length_2 512 \
  --doc_stride 128 \
  --eval_metric best_f1 \
  --output_dir outputs/newsqa/retr \
  --output_dir_2 outputs/newsqa/read \
  --data_binary_dir data_binary/retr \
  --data_binary_dir_2 data_binary/read \
  --version_2_with_negative \
  --do_lower_case \
  --top_k 5 \
  --do_preprocess \
  --do_preprocess_2 \
  --first_stage \

In order to improve efficiency, we store data and model generated during training in a binary format. Specifically, when you switch on do_preprocess, the converted data in the first stage will be stored in the directory data_binary, next time you can switch off this option to directly load data. As well, do_preprocess aims at the data in the second stage, and first_stage is for the retriever model. The model and metrics result can be found in the directory output/newsqa after training.

License

Soochow University © Mengxing Dong

Owner
Walle
Walle
A simple word search made in python

Word Search Puzzle A simple word search made in python Usage $ python3 main.py -h usage: main.py [-h] [-c] [-f FILE] Generates a word s

Magoninho 16 Mar 10, 2022
Quick insights from Zoom meeting transcripts using Graph + NLP

Transcript Analysis - Graph + NLP This program extracts insights from Zoom Meeting Transcripts (.vtt) using TigerGraph and NLTK. In order to run this

Advit Deepak 7 Sep 17, 2022
This code is the implementation of Text Emotion Recognition (TER) with linguistic features

APSIPA-TER This code is the implementation of Text Emotion Recognition (TER) with linguistic features. The network model is BERT with a pretrained mod

kenro515 1 Feb 08, 2022
Production First and Production Ready End-to-End Keyword Spotting Toolkit

Production First and Production Ready End-to-End Keyword Spotting Toolkit

223 Jan 02, 2023
A unified tokenization tool for Images, Chinese and English.

ICE Tokenizer Token id [0, 20000) are image tokens. Token id [20000, 20100) are common tokens, mainly punctuations. E.g., icetk[20000] == 'unk', ice

THUDM 42 Dec 27, 2022
내부 작업용 django + vue(vuetify) boilerplate. 짠 하면 돌아감.

Pocket Galaxy 아주 간단한 개인용, 혹은 내부용 툴을 만들어야하는데 이왕이면 웹이 편하죠? 그럴때를 위해 만들어둔 django와 vue(vuetify)로 이뤄진 boilerplate 입니다. 각 폴더에 있는 설명서대로 실행을 시키면 일단 당장 뭔가가 돌아갑니

Jamie J. Seol 16 Dec 03, 2021
SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples

SNCSE SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples This is the repository for SNCSE. SNCSE aims to allev

Sense-GVT 59 Jan 02, 2023
Utilize Korean BERT model in sentence-transformers library

ko-sentence-transformers 이 프로젝트는 KoBERT 모델을 sentence-transformers 에서 보다 쉽게 사용하기 위해 만들어졌습니다. Ko-Sentence-BERT-SKTBERT 프로젝트에서는 KoBERT 모델을 sentence-trans

Junghyun 40 Dec 20, 2022
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
🐍 A hyper-fast Python module for reading/writing JSON data using Rust's serde-json.

A hyper-fast, safe Python module to read and write JSON data. Works as a drop-in replacement for Python's built-in json module. This is alpha software

Matthias 479 Jan 01, 2023
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
A Facebook Messenger Chatbot using NLP

A Facebook Messenger Chatbot using NLP This project is about creating a messenger chatbot using basic NLP techniques and models like Logistic Regressi

6 Nov 20, 2022
Every Google, Azure & IBM text to speech voice for free

TTS-Grabber Quick thing i made about a year ago to download any text with any tts voice, over 630 voices to choose from currently. It will split the i

16 Dec 07, 2022
The ability of computer software to identify words and phrases in spoken language and convert them to human-readable text

speech-recognition-py Speech recognition is the ability of computer software to identify words and phrases in spoken language and convert them to huma

Deepangshi 1 Apr 03, 2022
Speech to text streamlit app

Speech to text Streamlit-app! 👄 This speech to text recognition is powered by t

Charly Wargnier 9 Jan 01, 2023
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab.

Speech-Backbones This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab. Grad-TTS Official implementation of the Grad-

HUAWEI Noah's Ark Lab 295 Jan 07, 2023
Programme de chiffrement et de déchiffrement inverse d'un message en python3.

Chiffrement Inverse En Python3 Programme de chiffrement et de déchiffrement inverse d'un message en python3. Explication du chiffrement inverse avec c

Malik Makkes 2 Mar 26, 2022
Tools and data for measuring the popularity & growth of various programming languages.

growth-data Tools and data for measuring the popularity & growth of various programming languages. Install the dependencies $ pip install -r requireme

3 Jan 06, 2022
scikit-learn wrappers for Python fastText.

skift scikit-learn wrappers for Python fastText. from skift import FirstColFtClassifier df = pandas.DataFrame([['woof', 0], ['meow', 1]], colu

Shay Palachy 233 Sep 09, 2022