Code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

Overview

EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation

This repository contains the code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

Requirements

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

pip install -r requirements.txt

Download checkpoints

Download the vocabulary file of BERT-base (uncased) from HERE, and put it into ./pretrained_ckpt/.
Download the pre-trained checkpoint of BERT-base (uncased) from HERE, and put it into ./pretrained_ckpt/.
Download the 2nd general distillation checkpoint of TinyBERT from HERE, and extract them into ./pretrained_ckpt/.

Prepare dataset

Download the latest dump of Wikipedia from HERE, and extract it into ./dataset/pretrain_data/download_wikipedia/.
Download a mirror of BooksCorpus from HERE, and extract it into ./dataset/pretrain_data/download_bookcorpus/.

- Pre-training data

bash create_pretrain_data.sh
bash create_pretrain_feature.sh

The features of Wikipedia, BooksCorpus, and their concatenation will be saved into ./dataset/pretrain_data/wikipedia_nomask/, ./dataset/pretrain_data/bookcorpus_nomask/, and ./dataset/pretrain_data/wiki_book_nomask/, respectively.

- Fine-tuning data

Download the GLUE dataset using the script in HERE, and put the files into ./dataset/glue/.
Download the SQuAD v1.1 and v2.0 datasets from the following links:

and put them into ./dataset/squad/.

Pre-train the supernet

bash pretrain_supernet.sh

The checkpoints will be saved into ./exp/pretrain/supernet/, and the names of the sub-directories should be modified into stage1_2 and stage3 correspondingly.

We also provide the checkpoint of the supernet in stage 3 (pre-trained with both Wikipedia and BooksCorpus) at HERE.

Train the teacher model (BERT$_{\rm BASE}$)

bash train.sh

The checkpoints will be saved into ./exp/train/bert_base/, and the names of the sub-directories should be modified into the corresponding task name (i.e., mnli, qqp, qnli, sst-2, cola, sts-b, mrpc, rte, wnli, squad1.1, and squad2.0). Each sub-directory contains a checkpoint named best_model.bin.

Conduct NAS (including search stage 1, 2, and 3)

bash ffn_search.sh

The checkpoints will be saved into ./exp/ffn_search/.

Distill the student model

- TinyBERT$_4$, TinyBERT$_6$

bash finetune.sh

The checkpoints will be saved into ./exp/downstream/tiny_bert/.

- EfficientBERT$_{\rm TINY}$, EfficientBERT, EfficientBERT+, EfficientBERT++

bash nas_finetune.sh

The above script will first pre-train the student models based on the pre-trained checkpoint of the supernet in stage 3, and save the pre-trained checkpoints into ./exp/pretrain/auto_bert/. Then fine-tune it on the downstream datasets, and save the fine-tuned checkpoints into ./exp/downstream/auto_bert/.

We also provide the pre-trained checkpoints of the student models (including EfficientBERT$_{\rm TINY}$, EfficientBERT, and EfficientBERT++) at HERE.

- EfficientBERT (TinyBERT$_6$)

bash nas_finetune_transfer.sh

The pre-trained and fine-tuned checkpoints will be saved into ./exp/pretrain/auto_tiny_bert/ and ./exp/downstream/auto_tiny_bert/, respectively.

Test on the GLUE dataset

bash test.sh

The test results will be saved into ./test_results/.

Reference

If you find this code helpful for your research, please cite the following paper.

@inproceedings{dong2021efficient-bert,
  title     = {{E}fficient{BERT}: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation},
  author    = {Chenhe Dong and Guangrun Wang and Hang Xu and Jiefeng Peng and Xiaozhe Ren and Xiaodan Liang},
  booktitle = {Findings of the Association for Computational Linguistics: EMNLP 2021},
  year      = {2021}
}
Owner
Chenhe Dong
Chenhe Dong
Twitter-NLP-Analysis - Twitter Natural Language Processing Analysis

Twitter-NLP-Analysis Business Problem I got last @turk_politika 3000 tweets with

Çağrı Karadeniz 7 Mar 12, 2022
State of the art faster Natural Language Processing in Tensorflow 2.0 .

tf-transformers: faster and easier state-of-the-art NLP in TensorFlow 2.0 ****************************************************************************

74 Dec 05, 2022
2021语言与智能技术竞赛:机器阅读理解任务

LICS2021 MRC 1. 项目&任务介绍 本项目基于官方给定的baseline(DuReader-Checklist-BASELINE)进行二次改造,对整个代码框架做了简单的重构,对核心网络结构添加了注释,解耦了数据读取的模块,并添加了阈值确认的功能,一些小的细节也做了改进。 本次任务为202

roar 29 Dec 05, 2022
PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

YangHeng 567 Jan 07, 2023
Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Ubiquitous Knowledge Processing Lab 59 Dec 01, 2022
Predicting the usefulness of reviews given the review text and metadata surrounding the reviews.

Predicting Yelp Review Quality Table of Contents Introduction Motivation Goal and Central Questions The Data Data Storage and ETL EDA Data Pipeline Da

Jeff Johannsen 3 Nov 27, 2022
Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet.

Sonnet finder Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet. Usage This is a Python scrip

Marcel Bollmann 11 Sep 25, 2022
Task-based datasets, preprocessing, and evaluation for sequence models.

SeqIO: Task-based datasets, preprocessing, and evaluation for sequence models. SeqIO is a library for processing sequential data to be fed into downst

Google 290 Dec 26, 2022
Nateve compiler developed with python.

Adam Adam is a Nateve Programming Language compiler developed using Python. Nateve Nateve is a new general domain programming language open source ins

Nateve 7 Jan 15, 2022
Uses Google's gTTS module to easily create robo text readin' on command.

Tool to convert text to speech, creating files for later use. TTRS uses Google's gTTS module to easily create robo text readin' on command.

0 Jun 20, 2021
Fine-tuning scripts for evaluating transformer-based models on KLEJ benchmark.

The KLEJ Benchmark Baselines The KLEJ benchmark (Kompleksowa Lista Ewaluacji Językowych) is a set of nine evaluation tasks for the Polish language und

Allegro Tech 17 Oct 18, 2022
BERT score for text generation

BERTScore Automatic Evaluation Metric described in the paper BERTScore: Evaluating Text Generation with BERT (ICLR 2020). News: Features to appear in

Tianyi 1k Jan 08, 2023
this repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

1 Nov 02, 2021
InferSent sentence embeddings

InferSent InferSent is a sentence embeddings method that provides semantic representations for English sentences. It is trained on natural language in

Facebook Research 2.2k Dec 27, 2022
🦅 Pretrained BigBird Model for Korean (up to 4096 tokens)

Pretrained BigBird Model for Korean What is BigBird • How to Use • Pretraining • Evaluation Result • Docs • Citation 한국어 | English What is BigBird? Bi

Jangwon Park 183 Dec 14, 2022
Utilize Korean BERT model in sentence-transformers library

ko-sentence-transformers 이 프로젝트는 KoBERT 모델을 sentence-transformers 에서 보다 쉽게 사용하기 위해 만들어졌습니다. Ko-Sentence-BERT-SKTBERT 프로젝트에서는 KoBERT 모델을 sentence-trans

Junghyun 40 Dec 20, 2022
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 A repository part of the MarIA project. Corpora 📃 Corpora Number of documents Number of tokens Size (GB) BNE 201,080,084

Plan de Tecnologías del Lenguaje - Gobierno de España 203 Dec 20, 2022
The Sudachi synonym dictionary in Solar format.

solr-sudachi-synonyms The Sudachi synonym dictionary in Solar format. Summary Run a script that checks for updates to the Sudachi dictionary every hou

Karibash 3 Aug 19, 2022
Python wrapper for Stanford CoreNLP tools v3.4.1

Python interface to Stanford Core NLP tools v3.4.1 This is a Python wrapper for Stanford University's NLP group's Java-based CoreNLP tools. It can eit

Dustin Smith 610 Sep 07, 2022
Python library for interactive topic model visualization. Port of the R LDAvis package.

pyLDAvis Python library for interactive topic model visualization. This is a port of the fabulous R package by Carson Sievert and Kenny Shirley. pyLDA

Ben Mabey 1.7k Dec 20, 2022