DANet for Tabular data classification/ regression.

Related tags

Deep LearningDANet
Overview

Deep Abstract Networks

A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression.

Brief Introduction

Tabular data are ubiquitous in real world applications. Although many commonly-used neural components (e.g., convolution) and extensible neural networks (e.g., ResNet) have been developed by the machine learning community, few of them were effective for tabular data and few designs were adequately tailored for tabular data structures. In this paper, we propose a novel and flexible neural component for tabular data, called Abstract Layer (AbstLay), which learns to explicitly group correlative input features and generate higher-level features for semantics abstraction. Also, we design a structure re-parameterization method to compress AbstLay, thus reducing the computational complexity by a clear margin in the reference phase. A special basic block is built using AbstLays, and we construct a family of Deep Abstract Networks (DANets) for tabular data classification and regression by stacking such blocks. In DANets, a special shortcut path is introduced to fetch information from raw tabular features, assisting feature interactions across different levels. Comprehensive experiments on real-world tabular datasets show that our AbstLay and DANets are effective for tabular data classification and regression, and the computational complexity is superior to competitive methods.

DANets illustration

DANets

Downloads

Dataset

Download the datasets from the following links:

(Optional) Before starting the program, you may change the file format to .pkl by using svm2pkl() or csv2pkl() functions in ./data/data_util.py.

Weights for inference models

The demo weights for Forest Cover Type dataset is available in the folder "./Weights/".

How to use

Setting

  1. Clone or download this repository, and cd the path.
  2. Build a working python environment. Python 3.7 is fine for this repository.
  3. Install packages following the requirements.txt, e.g., by using pip install -r requirements.txt.

Training

  1. Set the hyperparameters in config files (./config/default.py or ./config/*.yaml).
    Notably, the hyperparameters in .yaml file will cover those in default.py.

  2. Run by python main.py --c [config_path] --g [gpu_id].

    • -c: The config file path
    • -g: GPU device ID
  3. The checkpoint models and best models will be saved at the ./logs file.

Inference

  1. Replace the resume_dir path with the file path containing your trained model/weight.
  2. Run codes by using python predict.py -d [dataset_name] -m [model_file_path] -g [gpu_id].
    • -d: Dataset name
    • -m: Model path for loading
    • -g: GPU device ID

Config Hyperparameters

Normal parameters

  • dataset: str
    The dataset name given must match those in ./data/dataset.py.

  • task: str
    Choose one of the pre-given tasks 'classification' and 'regression'.

  • resume_dir: str
    The log path containing the checkpoint models.

  • logname: str
    The directory names of the models save at ./logs.

  • seed: int
    The random seed.

Model parameters

  • layer: int (default=20)
    Number of abstract layers to stack

  • k: int (default=5)
    Number of masks

  • base_outdim: int (default=64)
    The output feature dimension in abstract layer.

  • drop_rate: float (default=0.1)
    Dropout rate in shortcut module

Fit parameters

  • lr: float (default=0.008)
    Learning rate

  • max_epochs: int (default=5000)
    Maximum number of epochs in training.

  • patience: int (default=1500)
    Number of consecutive epochs without improvement before performing early stopping. If patience is set to 0, then no early stopping will be performed.

  • batch_size: int (default=8192)
    Number of examples per batch.

  • virtual_batch_size: int (default=256)
    Size of the mini batches used for "Ghost Batch Normalization". virtual_batch_size must divide batch_size.

Citations

@inproceedings{danets, 
   title={DANets: Deep Abstract Networks for Tabular Data Classification and Regression}, 
   author={Chen, Jintai and Liao, Kuanlun and Wan, Yao and Chen, Danny Z and Wu, Jian}, 
   booktitle={AAAI}, 
   year={2022}
 }
Owner
Ronnie Rocket
Ronnie Rocket
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 09, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis

This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis Install the package in the requirements.txt, the

108 Dec 23, 2022
This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search"

InvariantAncestrySearch This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search

Phillip Bredahl Mogensen 0 Feb 02, 2022
SAS: Self-Augmentation Strategy for Language Model Pre-training

SAS: Self-Augmentation Strategy for Language Model Pre-training This repository

Alibaba 5 Nov 02, 2022
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022
pix2pix in tensorflow.js

pix2pix in tensorflow.js This repo is moved to https://github.com/yining1023/pix2pix_tensorflowjs_lite See a live demo here: https://yining1023.github

Yining Shi 47 Oct 04, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .▄▄ · ▄· ▄▌ ▐ ▄ ▄▄▄· ▐ ▄ ▐█ ▀. ▐█▪██▌•█▌▐█▐█ ▄█▪ •█▌▐█ ▄▀▀▀█▄▐█▌▐█▪▐█▐▐▌ ██▀

SynPon 53 Dec 12, 2022
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Peidong Liu(刘沛东) 54 Dec 17, 2022
Repositório da disciplina de APC, no segundo semestre de 2021

NOTAS FINAIS: https://github.com/fabiommendes/apc2018/blob/master/nota-final.pdf Algoritmos e Programação de Computadores Este é o Git da disciplina A

16 Dec 16, 2022
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

MindsDB Inc 12.2k Jan 03, 2023
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

McGill NLP 27 Dec 02, 2022
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou

Hengrui Cai 0 Oct 19, 2021
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022