Adversarial Attacks are Reversible via Natural Supervision

Overview

Adversarial Attacks are Reversible via Natural Supervision

ICCV2021

Citation

@InProceedings{Mao_2021_ICCV,
    author    = {Mao, Chengzhi and Chiquier, Mia and Wang, Hao and Yang, Junfeng and Vondrick, Carl},
    title     = {Adversarial Attacks Are Reversible With Natural Supervision},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {661-671}
}

setup

  • Create the environment from the environment.yml file:
  • conda env create -f environment.yml
  • conda activate myenv

CIFAR-10 Experiment

  • Choose the right normalization function in cifar10_defense.py L23-26

  • File cifar10_defense.py is for both training SSL branch and test reversal defense. If you would like to train SSL, do not use --eval_only, and vice versa.

Example Command for running our method:

Semi-SL Carmon et. al.

  • Do not do std, mean normalize, they just use 0-1.

  • Download Carmon et. al.'s model: RobustBackboneClassifier: cifar10_rst_adv.pt.ckpt, Our SSL Model: ssl_model_130.pth

  • Train SSL: CUDA_VISIBLE_DEVICES=0 python cifar10_defense.py --fname unlab_cifar10_srn28-10_carmon --md_path /local/rcs/mcz/2021Spring/RobPretrained/unlabeled-rob/cifar10_rst_adv.pt.ckpt --carmon, if you use our checkponit, you can pass this step.

  • Test: CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python cifar10_defense.py --fname test --md_path /local/rcs/mcz/2021Spring/RobPretrained/unlabeled-rob/cifar10_rst_adv.pt.ckpt --carmon --eval_only --ssl_model_path /local/rcs/mcz/2021Spring/SSRobdata/unlab_cifar10_srn28-10_carmon/March1/ssl_model_130.pth

  • We offer PGD, CW, and BIM attack

  • For AutoAttack, run the following: CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python cifar10_defense_rebAA.py --fname test --md_path /proj/vondrick/mcz/SSRobust/Pretrained_model/unlabeled-rob/cifar10_rst_adv.pt.ckpt --carmon --eval_only --ssl_model_path /proj/vondrick/mcz/SSRobust/Ours/unlab_cifar10_srn28-10_carmon/March1/ssl_model_130.pth --attack-iters 1 --n_views 4

Owner
Computer Vision Lab at Columbia University
Computer Vision Lab at Columbia University
Implementation of PyTorch-based multi-task pre-trained models

mtdp Library containing implementation related to the research paper "Multi-task pre-training of deep neural networks for digital pathology" (Mormont

Romain Mormont 27 Oct 14, 2022
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022
SimulLR - PyTorch Implementation of SimulLR

PyTorch Implementation of SimulLR There is an interesting work[1] about simultan

11 Dec 22, 2022
The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines"

MangaLineExtraction_PyTorch The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines" Usage model_torch.py [sourc

Miaomiao Li 82 Jan 02, 2023
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization".

Deep Exemplar-based Video Colorization (Pytorch Implementation) Paper | Pretrained Model | Youtube video 🔥 | Colab demo Deep Exemplar-based Video Col

Bo Zhang 253 Dec 27, 2022
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi

Zilong Huang 1.3k Dec 27, 2022
Code & Experiments for "LILA: Language-Informed Latent Actions" to be presented at the Conference on Robot Learning (CoRL) 2021.

LILA LILA: Language-Informed Latent Actions Code and Experiments for Language-Informed Latent Actions (LILA), for using natural language to guide assi

Sidd Karamcheti 11 Nov 25, 2022
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022
Chainer Implementation of Semantic Segmentation using Adversarial Networks

Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution

Taiki Oyama 99 Jun 28, 2022
Fast and customizable reconnaissance workflow tool based on simple YAML based DSL.

Fast and customizable reconnaissance workflow tool based on simple YAML based DSL, with support of notifications and distributed workload of that work

Américo Júnior 3 Mar 11, 2022
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022
A Python parser that takes the content of a text file and then reads it into variables.

Text-File-Parser A Python parser that takes the content of a text file and then reads into variables. Input.text File 1. What is your ***? 1. 18 -

Kelvin 0 Jul 26, 2021
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF

Simon Meister 270 Nov 06, 2022
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023
Implementation of OpenAI paper with Simple Noise Scale on Fastai V2

README Implementation of OpenAI paper "An Empirical Model of Large-Batch Training" for Fastai V2. The code is based on the batch size finder implement

13 Dec 10, 2021
Awesome Long-Tailed Learning

Awesome Long-Tailed Learning This repo pays specially attention to the long-tailed distribution, where labels follow a long-tailed or power-law distri

Stomach_ache 284 Jan 06, 2023
Multi-Horizon-Forecasting-for-Limit-Order-Books

Multi-Horizon-Forecasting-for-Limit-Order-Books This jupyter notebook is used to demonstrate our work, Multi-Horizon Forecasting for Limit Order Books

Zihao Zhang 116 Dec 23, 2022