Adversarial Attacks are Reversible via Natural Supervision

Overview

Adversarial Attacks are Reversible via Natural Supervision

ICCV2021

Citation

@InProceedings{Mao_2021_ICCV,
    author    = {Mao, Chengzhi and Chiquier, Mia and Wang, Hao and Yang, Junfeng and Vondrick, Carl},
    title     = {Adversarial Attacks Are Reversible With Natural Supervision},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {661-671}
}

setup

  • Create the environment from the environment.yml file:
  • conda env create -f environment.yml
  • conda activate myenv

CIFAR-10 Experiment

  • Choose the right normalization function in cifar10_defense.py L23-26

  • File cifar10_defense.py is for both training SSL branch and test reversal defense. If you would like to train SSL, do not use --eval_only, and vice versa.

Example Command for running our method:

Semi-SL Carmon et. al.

  • Do not do std, mean normalize, they just use 0-1.

  • Download Carmon et. al.'s model: RobustBackboneClassifier: cifar10_rst_adv.pt.ckpt, Our SSL Model: ssl_model_130.pth

  • Train SSL: CUDA_VISIBLE_DEVICES=0 python cifar10_defense.py --fname unlab_cifar10_srn28-10_carmon --md_path /local/rcs/mcz/2021Spring/RobPretrained/unlabeled-rob/cifar10_rst_adv.pt.ckpt --carmon, if you use our checkponit, you can pass this step.

  • Test: CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python cifar10_defense.py --fname test --md_path /local/rcs/mcz/2021Spring/RobPretrained/unlabeled-rob/cifar10_rst_adv.pt.ckpt --carmon --eval_only --ssl_model_path /local/rcs/mcz/2021Spring/SSRobdata/unlab_cifar10_srn28-10_carmon/March1/ssl_model_130.pth

  • We offer PGD, CW, and BIM attack

  • For AutoAttack, run the following: CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python cifar10_defense_rebAA.py --fname test --md_path /proj/vondrick/mcz/SSRobust/Pretrained_model/unlabeled-rob/cifar10_rst_adv.pt.ckpt --carmon --eval_only --ssl_model_path /proj/vondrick/mcz/SSRobust/Ours/unlab_cifar10_srn28-10_carmon/March1/ssl_model_130.pth --attack-iters 1 --n_views 4

Owner
Computer Vision Lab at Columbia University
Computer Vision Lab at Columbia University
LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation Table of Contents: Introduction Project Structure Installation Datas

Yu Wang 492 Dec 02, 2022
Biomarker identification for COVID-19 Severity in BALF cells Single-cell RNA-seq data

scBALF Covid-19 dataset Analysis Here is the Github page that has the codes for the bioinformatics pipeline described in the paper COVID-Datathon: Bio

Nami Niyakan 2 May 21, 2022
一套完整的微博舆情分析流程代码,包括微博爬虫、LDA主题分析和情感分析。

已经将项目的关键文件上传,包含微博爬虫、LDA主题分析和情感分析三个部分。 1.微博爬虫 实现微博评论爬取和微博用户信息爬取,一天大概十万条。 2.LDA主题分析 实现文档主题抽取,包括数据清洗及分词、主题数的确定(主题一致性和困惑度)和最优主题模型的选择(暴力搜索)。 3.情感分析 实现评论文本的

182 Jan 02, 2023
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022
Official implementation of "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 31, 2022
A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

CapsGNN ⠀⠀ A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019). Abstract The high-quality node embeddings learned from the Graph Neur

Benedek Rozemberczki 1.2k Jan 02, 2023
A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning

A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning Website • About • Installation • Using OpenDR

OpenDR 304 Dec 28, 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
A quantum game modeling of pandemic (QHack 2022)

Contributors: @JongheumJung, @YoonjaeChung, @GyunghunKim Abstract In the regime of a global pandemic, leaders around the world need to consider variou

Yoonjae Chung 8 Apr 03, 2022
BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis

Bilateral Denoising Diffusion Models (BDDMs) This is the official PyTorch implementation of the following paper: BDDM: BILATERAL DENOISING DIFFUSION M

172 Dec 23, 2022
《Geo Word Clouds》paper implementation

《Geo Word Clouds》paper implementation

Russellwzr 2 Jan 28, 2022
This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.

Live-Face-Detection Project Description: In this project, we will be using the live video feed from the camera to detect Faces. It will also detect so

Hassan Shahzad 3 Oct 02, 2021
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Meta Archive 873 Dec 15, 2022
Curated list of awesome GAN applications and demo

gans-awesome-applications Curated list of awesome GAN applications and demonstrations. Note: General GAN papers targeting simple image generation such

Minchul Shin 4.5k Jan 07, 2023
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
A toy compiler that can convert Python scripts to pickle bytecode 🥒

Pickora 🐰 A small compiler that can convert Python scripts to pickle bytecode. Requirements Python 3.8+ No third-party modules are required. Usage us

ꌗᖘ꒒ꀤ꓄꒒ꀤꈤꍟ 68 Jan 04, 2023
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

8 Nov 01, 2022
Global-Local Context Network for Person Search

Global-Local Context Network for Person Search Abstract: Person search aims to jointly localize and identify a query person from natural, uncropped im

Peng Zheng 15 Oct 17, 2022