Xanadu Quantum Codebook is an experimental, exercise-based introduction to quantum computing using PennyLane.

Overview

Xanadu Quantum Codebook

The Xanadu Quantum Codebook is an experimental, exercise-based introduction to quantum computing using PennyLane. This repository contains all the source text and coding challenge templates in the Codebook; the Codebook itself is available at codebook.xanadu.ai.

Providing feedback and getting help

The Codebook is currently in the beta stage of development. If you find an error in the Codebook, something is not working as expected, or have other technical feedback, please open an issue in this repository.

If you are stuck on a coding exercise, or have questions about the content and material, please post a question on the PennyLane discussion forum under the "Codebook" category.

Codebook team

The Xanadu Quantum Codebook was written, developed, and reviewed by members of the Xanadu team. The current contents are the work of the following people:

Catalina Albornoz, Guillermo Alonso, Mikhail Andrenkov, Priya Angara*, Ali Asadi, Álvaro Ballon, Sanchit Bapat, Olivia Di Matteo, Paul Finlay, Alberto Fumagalli, Andrew Gardhouse, Natalie Girard, Ant Hayes, Josh Izaac, Timjan Kalajdzievski, Nathan Killoran, Jay Soni, David Wakeham*.

(* Funding support for our student authors was provided by the Mitacs Accelerate program.)

If you would like to acknowledge the Codebook in your work, please use the following format:

C. Albornoz, G. Alonso, M. Andrenkov, P. Angara, A. Asadi, A. Ballon, S. Bapat, O. Di Matteo, P. Finlay, A. Fumagalli, A. Gardhouse, N. Girard, A. Hayes, J. Izaac, T. Kalajdzievski, N. Killoran, J. Soni, D. Wakeham. (2021) Xanadu Quantum Codebook.

Comments
  • [BUG] Error in grader

    [BUG] Error in grader

    Node number

    Codercise I.14.2

    Expected behavior

    IMPLEMENT THE MULTIPLEXER
    IF STATE OF FIRST TWO QUBITS IS 01, APPLY X TO THIRD QUBIT

    qml.MultiControlledX(control_wires=[0,1], wires=2, control_values='01') The above code should result in the desired behaviour, that is, give the correct output.

    Actual behavior

    Incorrect: your circuit does not have the correct action on |01>.

    Is however, the error being raised!

    Additional information

    No response

    Source code

    No response

    Tracebacks

    No response

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    opened by p-j-r 5
  • [BUG] Finishing node backward will mark succeeding node incomplete

    [BUG] Finishing node backward will mark succeeding node incomplete

    Node number

    Node I

    Expected behavior

    When finishing lessons in Node A before Node I, Node A should still be marked as complete.

    Actual behavior

    Node A will get back to an incomplete state (white circle) when it was finishing before Node I.

    Additional information

    I finished Node A before Node I. Node I is marked as complete (green circle). However, Node A (which previously finished) is not anymore.

    I am not certain about other node (like if you do the lesson backward, etc.). You might have to check them as well.

    Source code

    No response

    Tracebacks

    No response

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    opened by rootEnginear 4
  • [BUG] Cant accept terms

    [BUG] Cant accept terms

    Node number

    T

    Expected behavior

    I scroll to the bottom, and then the accept terms button becomes active

    Actual behavior

    Accept terms never becomes active

    Additional information

    Tried with and without Ublock Origin enabled (Chrome/Windows)

    Source code

    No response

    Tracebacks

    No response

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    opened by 00alia00 3
  • Wrong solution Codercise I.7.3

    Wrong solution Codercise I.7.3

    Feature details

    In Codercise I.7.3, the solution accepted as correct seems to be the wrong one.

    In the explanation following the question, 2 solutions are presented as being the only possible ones, and the second one (HTTHTH) is indicated as the correct one. However, the submission for the previous question only accepts the first one (HTHTTH) as the right answer.

    I worked out the math, and can confirm that the second one (HTTHTH) is the right answer as indicated in the text but not in the accepted solution to the codercise.

    image

    Additional information

    No response

    opened by kmyali 2
  • [Bug] Error in P1.1 grader

    [Bug] Error in P1.1 grader

    Feature details

    As explained here, the grader is marking a wrong answer (Hadamard on wire 1) as correct while marking wrong the correct answer (Hadamard on wire 0).

    Additional information

    No response

    opened by CatalinaAlbornoz 2
  • Incorrect Action of RY on Computational Basis States in I.6

    Incorrect Action of RY on Computational Basis States in I.6

    Feature details

    Hi there,

    There is a small error in the left panel equation display of the action of $RY(\theta)$ on the computational basis states in I.6 (in the discussion after codercise I.6.3). The sign of the $\sin(\theta/2)$ terms is reversed.

    Note that the expressions for this are correct in the corresponding place in the right "textbook" panel (end of the solution to exercise I.6.3).

    Additional information

    No response

    opened by robertmoir 2
  • [EDIT] I1.10 Incorrect analytical expectation value

    [EDIT] I1.10 Incorrect analytical expectation value

    Feature details

    Solution to Exercise I.10.2.c is given as 3.022769, but using Wolfram Alpha to calculate the provided matrix multiplication suggests that the answer should be -0.302769 instead.

    Using Pennylane to measure

    dev = qml.device("default.qubit", wires=1)
        @qml.qnode(dev)
        def qf():
            qml.MottonenStatePreparation([4 / 5, -3 / 5 * np.e ** (1j * np.pi / 3)], 0)
            return qml.expval(qml.Hermitian(np.array([[1, -2 * 1j], [2 * 1j, 2]]), 0))
    print(qf())
    

    also yields -0.3027687752661218

    Additional information

    No response

    accepted 
    opened by paullin03 2
  • [BUG]

    [BUG]

    Node number

    I.7.3

    Expected behavior

    Not to accept my answer

    Actual behavior

    My answer HTHT was accepted.

    Additional information

    No response

    Source code

    dev = qml.device("default.qubit", wires=1)
    
    @qml.qnode(dev)
    def unitary_with_h_and_t():
        
        qml.Hadamard(wires = 0)
        qml.T(wires = 0)
        qml.Hadamard(wires = 0)
        qml.T(wires = 0)
        
        
    
        return qml.state()
    

    Tracebacks

    No response

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    accepted 
    opened by Boniface316 2
  • [EDIT] Minor typo in codebook text, node G.4

    [EDIT] Minor typo in codebook text, node G.4

    Node number

    Node G.4, Exercise Exercise G.4.1

    Current content

    In the solution of Exercise G.4.1, item (a):

    The first term in the equation read $\left ( U \left | u\right \rangle \right )^\dagger \left | v\right \rangle$, but there's a $U$ missing, acting on $\left | v\right \rangle$

    Expected content

    The first term in the equation should be:

    $\left ( U \left | u\right \rangle \right )^\dagger U \left | v\right \rangle$

    Or even

    $\left ( U \left | u\right \rangle \right )^\dagger \left ( U \left | v\right \rangle \right )$

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    accepted 
    opened by andre-juan 2
  • [EDIT] Add syntax of the required gate

    [EDIT] Add syntax of the required gate

    Node number

    Codercise I.13.4.

    Current content

    The question does not contain the actual syntax of the MultiControlledX gate.

    Expected content

    A tip/hint drop down which contains:

    qml.MultiControlledX(control_wires=[control_1, control_2], wires=target_wire, control_values=string_of_control_values)
    

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    accepted 
    opened by ankit27kh 2
  • T-depth = 5 in Codercise I.5.4

    T-depth = 5 in Codercise I.5.4

    Node number

    Codercise I.5.4

    Current content

    The depth of the original circuit is 8, and there are 13 combined T and T† gates. The original T-depth is 6.

    Expected content

    The original T-depth should be 5 since the second qubit has a maximum of 5 T gates in a row.

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    opened by SaashaJoshi 2
  • [BUG] in codercise I.1.2

    [BUG] in codercise I.1.2

    Node number

    Node I.1, codercises I.1.2

    Expected behavior

    Codercise I.1.2 should throw an error if user mistakenly submits the inner product <state_2 | state_1> instead of <state_1 | state_2>.

    Possible solution: Have grader use complex-valued states for which <state_1 | state_2> != <state_1 | state_1>

    Actual behavior

    Grader passes even if user submits answer for <state_2 | state_1>.

    Additional information

    For example, the grader passes if user inputs:

        ##################
        # YOUR CODE HERE #
        ##################
    
        # COMPUTE AND RETURN THE INNER PRODUCT
    
        return  np.vdot(state_2,state_1)
    

    or

        ##################
        # YOUR CODE HERE #
        ##################
    
        # COMPUTE AND RETURN THE INNER PRODUCT
    
        return  np.dot(state_1,np.conjugate(state_2))
    

    Source code

    No response

    Tracebacks

    No response

    Check other issues

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    opened by diemilio 1
  • [BUG] in codercise I.1.1

    [BUG] in codercise I.1.1

    Node number

    Node I.1, codercises I.1.1

    Expected behavior

    Codercise I.1.1 should throw an error if user normalizes state without taking the norm of the complex amplitudes.

    Possible solution: Have grader use complex-valued variables to check answers.

    Actual behavior

    Grader passes even if normalization constant is not calculated correctly (a^2 + b^2 = 1 instead of |a'|^2 + |b'|^2 = 1`).

    Additional information

    For example, the grader passes if user inputs:

        # CREATE A VECTOR [a', b'] BASED ON alpha AND beta SUCH THAT |a'|^2 + |b'|^2 = 1
        norm_psi = np.array([alpha,beta])/np.sqrt(alpha**2+beta**2)
        # RETURN A VECTOR
        return norm_psi
    

    or

        # CREATE A VECTOR [a', b'] BASED ON alpha AND beta SUCH THAT |a'|^2 + |b'|^2 = 1
        psi = np.array([alpha,beta])
        norm_psi = psi/np.sqrt(np.dot(psi,psi))
        # RETURN A VECTOR
        return norm_psi
    

    The correct implementations should be:

        # CREATE A VECTOR [a', b'] BASED ON alpha AND beta SUCH THAT |a'|^2 + |b'|^2 = 1
        norm_psi = np.array([alpha,beta])/np.sqrt(abs(alpha)**2+abs(beta)**2)
        # RETURN A VECTOR
        return norm_psi
    

    or

        # CREATE A VECTOR [a', b'] BASED ON alpha AND beta SUCH THAT |a'|^2 + |b'|^2 = 1
        psi = np.array([alpha,beta])
        norm_psi = psi/np.sqrt(np.dot(psi,psi))
        # RETURN A VECTOR
        return norm_psi
    

    Source code

    No response

    Tracebacks

    No response

    Check other issues

    • [X] I have searched existing GitHub issues to make sure the issue does not already exist.
    opened by diemilio 1
  • Typo in P3.2

    Typo in P3.2

    Feature details

    P.3.2 seems to have a typo (as detailed here) in the explanation of the desired output.

    Current: “”" Returns: [(float, float)]: a list of phase windows for 1 to 9 estimation wires “”"

    Fixed: “”" Returns: [(float, float)]: a list of phase windows for “2” to 9 estimation wires “”"

    Additional information

    No response

    opened by CatalinaAlbornoz 0
  • [BUG] in codercise P3.1

    [BUG] in codercise P3.1

    Feature details

    As detailed here, the grader is taking bound 1 and bound 2 in the reverse order. We should either change the grader, the description of the bounds or the order in which they are returned.

    Additional information

    No response

    opened by CatalinaAlbornoz 0
  • New Feature Request

    New Feature Request

    Feature details

    Is there a way I can access any code that I have done in one desktop to a laptop without having to restart my laptop?

    Additional information

    No response

    opened by erdabravest2001 1
Releases(v0.1.0)
Owner
Xanadu
Quantum Computing Powered by Light
Xanadu
Materi workshop "Light up your Python!" Himpunan Mahasiswa Sistem Informasi Fakultas Ilmu Komputer Universitas Singaperbangsa Karawang, 4 September 2021 (Online via Zoom).

Workshop Python UNSIKA 2021 Materi workshop "Light up your Python!" Himpunan Mahasiswa Sistem Informasi Fakultas Ilmu Komputer Universitas Singaperban

Eka Putra 20 Mar 24, 2022
Python solutions to solve practical business problems.

Python Business Analytics Also instead of "watching" you can join the link-letter, it's already being sent out to about 90 people and you are free to

Derek Snow 357 Dec 26, 2022
Żmija is a simple universal code generation tool.

Żmija Żmija is a simple universal code generation tool. It is intended to be used as a means to generate code that is both efficient and easily mainta

Adrian Samoticha 2 Nov 23, 2021
A markdown wiki and dashboarding system for Datasette

datasette-notebook A markdown wiki and dashboarding system for Datasette This is an experimental alpha and everything about it is likely to change. In

Simon Willison 19 Apr 20, 2022
This program has been coded to allow the user to rename all the files in the entered folder.

Bulk_File_Renamer This program has been coded to allow the user to rename all the files in the entered folder. The only required package is "termcolor

1 Jan 06, 2022
Paper and Code for "Curriculum Learning by Optimizing Learning Dynamics" (AISTATS 2021)

Curriculum Learning by Optimizing Learning Dynamics (DoCL) AISTATS 2021 paper: Title: Curriculum Learning by Optimizing Learning Dynamics [pdf] [appen

Tianyi Zhou 15 Dec 06, 2022
An introduction to hikari, complete with different examples for different command handlers.

An intro to hikari This repo provides some simple examples to get you started with hikari. Contained in this repo are bots designed with both the hika

Ethan Henderson 18 Nov 29, 2022
Literate-style documentation generator.

888888b. 888 Y88b 888 888 888 d88P 888 888 .d8888b .d8888b .d88b. 8888888P" 888 888 d88P" d88P" d88""88b 888 888 888

Pycco 808 Dec 27, 2022
xeuledoc - Fetch information about a public Google document.

xeuledoc - Fetch information about a public Google document.

Malfrats Industries 651 Dec 27, 2022
Code and pre-trained models for "ReasonBert: Pre-trained to Reason with Distant Supervision", EMNLP'2021

ReasonBERT Code and pre-trained models for ReasonBert: Pre-trained to Reason with Distant Supervision, EMNLP'2021 Pretrained Models The pretrained mod

SunLab-OSU 29 Dec 19, 2022
Modified fork of CPython's ast module that parses `# type:` comments

Typed AST typed_ast is a Python 3 package that provides a Python 2.7 and Python 3 parser similar to the standard ast library. Unlike ast up to Python

Python 217 Dec 06, 2022
Parser manager for parsing DOC, DOCX, PDF or HTML files

Parser manager Description Parser gets PDF, DOC, DOCX or HTML file via API and saves parsed data to the database. Implemented in Ruby 3.0.1 using Acti

Эдем 4 Dec 04, 2021
Contains the assignments from the course Building a Modern Computer from First Principles: From Nand to Tetris.

Contains the assignments from the course Building a Modern Computer from First Principles: From Nand to Tetris.

Matheus Rodrigues 1 Jan 20, 2022
Count the number of lines of code in a directory, minus the irrelevant stuff

countloc Simple library to count the lines of code in a directory (excluding stuff like node_modules) Simply just run: countloc node_modules args to

Anish 4 Feb 14, 2022
Practical Python Programming

Welcome! When I first learned Python nearly 25 years ago, I was immediately struck by how I could productively apply it to all sorts of messy work pro

Dabeaz LLC 8.3k Jan 08, 2023
swagger-codegen contains a template-driven engine to generate documentation, API clients and server stubs in different languages by parsing your OpenAPI / Swagger definition.

Master (2.4.25-SNAPSHOT): 3.0.31-SNAPSHOT: Maven Central ⭐ ⭐ ⭐ If you would like to contribute, please refer to guidelines and a list of open tasks. ⭐

Swagger 15.2k Dec 31, 2022
Assignments from Launch X's python introduction course

Launch X - On Boarding Assignments from Launch X's Python Introduction Course Explore the docs » Report Bug · Request Feature Table of Contents About

Javier Méndez 0 Mar 15, 2022
OpenAPI (f.k.a Swagger) Specification code generator. Supports C#, PowerShell, Go, Java, Node.js, TypeScript, Python

AutoRest The AutoRest tool generates client libraries for accessing RESTful web services. Input to AutoRest is a spec that describes the REST API usin

Microsoft Azure 4.1k Jan 06, 2023
An introduction course for Python provided by VetsInTech

Introduction to Python This is an introduction course for Python provided by VetsInTech. For every "boot camp", there usually is a pre-req, but becaus

Vets In Tech 2 Dec 02, 2021
The Python Dict that's better than heroin.

addict addict is a Python module that gives you dictionaries whose values are both gettable and settable using attributes, in addition to standard ite

Mats Julian Olsen 2.3k Dec 22, 2022