a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

Related tags

Deep LearningUDL
Overview

UDL

UDL is a practicable framework used in Deep Learning (computer vision).

Benchmark

codes, results and models are available in UDL, please contact @Liang-Jian Deng (corresponding author)

Pansharpening model zoo:
  • PNN (RS'2016)
  • PanNet (CVPR'2017)
  • DiCNN1 (JSTAR'2019)
  • FusionNet (TGRS'2020)
  • DCFNet (ICCV'2021)

Results of DCFNet

Quantitative results

wv3 SAM ERGAS
new_data10 3.934 2.531
new_data11 4.133 2.630
new_data12_512 4.108 2.712
new_data6 2.638 1.461
new_data7 3.866 2.820
new_data8 3.257 2.210
new_data9 4.154 2.718
Avg(std) 3.727(0.571) 2.440(0.474)
Ideal Value 0 0
wv3_1258 SAM ERGAS
Avg(std) 3.377(1.200) 2.257(0.910)
Ideal Value 0 0

Visual results

please see the paper and the sub-directory: ./UDL/results/DCFNet

Install [Option]

please run python setup.py develop

Usage

open UDL/panshaprening/tests, run the following code:

python run_DCFNet.py

Note that default configures don't fit other environments, you can modify configures in pansharpening/models/DCFNet/option_DCFNet.py.

Benefit from mmcv/config.py, the project has the global configures in Basis/option.py, option_DCFNet inherits directly from Basis/option.py.

1. Data preparation

You need to download WorldView-3 datasets.

The directory tree should be look like this:

|-$ROOT/datasets
├── pansharpening
│   ├── training_data
│   │   ├── train_wv3_10000.h5
│   │   ├── valid_wv3_10000.h5
│   ├── test_data
│   │   ├── WV3_Simu
│   │   │   ├── new_data6.mat
│   │   │   ├── new_data7.mat
│   │   │   ├── ...
│   │   ├── WV3_Simu_mulExm
│   │   │   ├── test1_mulExm1258.mat

2. Training

args.eval = False, args.dataset='wv3'

3. Inference

args.eval = True, args.dataset='wv3_singleMat'

Plannings

Please expect more tasks and models

  • pansharpening

    • models
  • derain

    • models
  • HISR

    • models

Contribution

We appreciate all contributions to improve UDL. Looking forward to your contribution to UDL.

Citation

If you use this toolbox or benchmark in your research, please cite this project.

@InProceedings{Wu_2021_ICCV,
    author    = {Wu, Xiao and Huang, Ting-Zhu and Deng, Liang-Jian and Zhang, Tian-Jing},
    title     = {Dynamic Cross Feature Fusion for Remote Sensing Pansharpening},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {14687-14696}
}

Acknowledgement

  • MMCV: OpenMMLab foundational library for computer vision.
  • HRNet : High-resolution networks and Segmentation Transformer for Semantic Segmentation

License & Copyright

This project is open sourced under GNU General Public License v3.0

Owner
Xiao Wu
Xiao Wu
Reimplementation of the paper `Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? (ACL2020)`

Human Attention for Text Classification Re-implementation of the paper Human Attention Maps for Text Classification: Do Humans and Neural Networks Foc

Shunsuke KITADA 15 Dec 13, 2021
[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration This repository contains the implementation of our paper Locally Aware Pi

sfwang 70 Dec 19, 2022
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
A quick recipe to learn all about Transformers

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.

DAIR.AI 772 Dec 31, 2022
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
[ICCV2021] 3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds

3DVG-Transformer This repository is for the ICCV 2021 paper "3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds" Our method "3DV

22 Dec 11, 2022
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022
Disentangled Lifespan Face Synthesis

Disentangled Lifespan Face Synthesis Project Page | Paper Demo on Colab Preparation Please follow this github to prepare the environments and dataset.

何森 50 Sep 20, 2022
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
Object detection (YOLO) with pytorch, OpenCV and python

Real Time Object/Face Detection Using YOLO-v3 This project implements a real time object and face detection using YOLO algorithm. You only look once,

1 Aug 04, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022
Chainer Implementation of Semantic Segmentation using Adversarial Networks

Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution

Taiki Oyama 99 Jun 28, 2022
AnimationKit: AI Upscaling & Interpolation using Real-ESRGAN+RIFE

ALPHA 2.5: Frostbite Revival (Released 12/23/21) Changelog: [ UI ] Chained design. All steps link to one another! Use the master override toggles to s

87 Nov 16, 2022
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022
Code release of paper Improving neural implicit surfaces geometry with patch warping

NeuralWarp: Improving neural implicit surfaces geometry with patch warping Project page | Paper Code release of paper Improving neural implicit surfac

François Darmon 167 Dec 30, 2022
Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.

LearningPatches | Webpage | Paper | Video Learning Manifold Patch-Based Representations of Man-Made Shapes Dmitriy Smirnov, Mikhail Bessmeltsev, Justi

Dima Smirnov 22 Nov 14, 2022