Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 B) on a single 16 GB VRAM V100 Google Cloud instance with Huggingface Transformers using DeepSpeed

Overview

Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 Billion Parameters) on a single 16 GB VRAM V100 Google Cloud instance with Huggingface Transformers using DeepSpeed

  • Finetuning large language models like GPT2-xl is often difficult, as these models are too big to fit on a single GPU.
  • This guide explains how to finetune GPT2-xl and GPT-NEO (2.7B Parameters) with just one command of the Huggingface Transformers library on a single GPU.
  • This is made possible by using the DeepSpeed library and gradient checkpointing to lower the required GPU memory usage of the model.
  • I also explain how to set up a server on Google Cloud with a V100 GPU (16GB VRAM), that you can use if you don't have a GPU.

1. (Optional) Setup VM with V100 in Google Compute Engine

Note: The GPT2-xl model does run on any server with a GPU with at least 16 GB VRAM and 60 GB RAM. The GPT-NEO model needs at least 70 GB RAM. If you use your own server and not the setup described here, you will need to install CUDA and Pytorch on it.

Requirements

  1. Install the Google Cloud SDK: Click Here
  2. Register a Google Cloud Account, create a project and set up billing (only once you set up billing, you can use the $300 dollar sign up credit for GPUs).
  3. Request a quota limit increase for "GPU All Regions" to 1. Here is a step by step guide. The UI changed a bit and looks now like this.
  4. Log in and initialize the cloud sdk with gcloud auth login and gcloud init and follow the steps until you are set up.

Create VM

  • Replace YOURPROJECTID in the command below with the project id from your GCE project.
  • You can add the --preemptible flag to the command below, this reduces your cost to about 1/3, but Google is then able to shut down your instance at any point. At the time of writing, this configuration only costs about $1.28 / hour in GCE, when using preemptible.
  • You can change the zone, if there are no ressources available. Here is a list of all zones and whether they have V100 GPUs. Depending on the time of the day you might need to try out a few.
  • We need a GPU server with at least 60 GB RAM, otherwise the run will crash, whenever the script wants to save/pickle a model. This setup below gives us as much RAM as possible with 12 CPU cores in GCE (without paying for extended memory). You also can't use more than 12 CPU cores with a single V100 GPU in GCE.

Run this to create the instance:

gcloud compute instances create gpuserver \
   --project YOURPROJECTID \
   --zone us-west1-b \
   --custom-cpu 12 \
   --custom-memory 78 \
   --maintenance-policy TERMINATE \
   --image-family pytorch-1-7-cu110 \
   --image-project deeplearning-platform-release \
   --boot-disk-size 200GB \
   --metadata "install-nvidia-driver=True" \
   --accelerator="type=nvidia-tesla-v100,count=1" \

After 5 minutes or so (the server needs to install nvidia drivers first), you can connect to your instance with the command below. If you changed the zone, you also will need to change it here.

  • replace YOURSDKACCOUNT with your sdk account name
gcloud compute ssh [email protected] --zone=us-west1-b

Don't forget to shut down the server once your done, otherwise you will keep getting billed for it. This can be done here.

The next time you can restart the server from the same web ui here.

2. Download script and install libraries

Run this to download the script and to install all libraries:

git clone https://github.com/Xirider/finetune-gpt2xl.git
chmod -R 777 finetune-gpt2xl/
cd finetune-gpt2xl
pip install -r requirements.txt 
  • This installs transformers from source, as the current release doesn't work well with deepspeed.

(Optional) If you want to use Wandb.ai for experiment tracking, you have to login:

wandb login

3. Finetune GPT2-xl (1.5 Billion Parameters)

Then add your training data:

  • replace the example train.txt and validation.txt files in the folder with your own training data with the same names and then run python text2csv.py. This converts your .txt files into one column csv files with a "text" header and puts all the text into a single line. We need to use .csv files instead of .txt files, because Huggingface's dataloader removes line breaks when loading text from a .txt file, which does not happen with the .csv files.
  • If you want to feed the model separate examples instead of one continuous block of text, you need to pack each of your examples into an separate line in the csv train and validation files.
  • Be careful with the encoding of your text. If you don't clean your text files or if just copy text from the web into a text editor, the dataloader from the datasets library might not load them.

Run this:

deepspeed --num_gpus=1 run_clm.py \
--deepspeed ds_config.json \
--model_name_or_path gpt2-xl \
--train_file train.csv \
--validation_file validation.csv \
--do_train \
--do_eval \
--fp16 \
--overwrite_cache \
--evaluation_strategy="steps" \
--output_dir finetuned \
--eval_steps 200 \
--num_train_epochs 1 \
--gradient_accumulation_steps 2 \
--per_device_train_batch_size 8
  • This command runs the the standard run_clm.py file from Huggingface's examples with deepspeed, just with 2 lines added to enable gradient checkpointing to use less memory.
  • Training on the Shakespeare example should take about 17 minutes. With gradient accumulation 2 and batch size 8, one gradient step takes about 9 seconds. This means the model training speed should be almost 2 examples / second. You can go up to batch size of 12 before running out of memory, but that doesn't provide any speedups.
  • Note that the default huggingface optimizer hyperparameters and the hyperparameters given as flag overwrite the hyperparameters in the ds_config.json file. Therefore if you want to adjust learning rates, warmup and more, you need to set these as flags to the training command. For an example you can find further below the training command of GPT-NEO which changes the learning rate.
  • You might want to try different hyperparameters like --learning_rate and --warmup_steps to improve the finetuning.

4. Generate text with your finetuned model

You can test your finetuned GPT2-xl model with this script from Huggingface Transfomers (is included in the folder):

python run_generation.py --model_type=gpt2 --model_name_or_path=finetuned --length 200

Or you can use it now in your own code like this to generate text in batches:

# credit to Niels Rogge - https://github.com/huggingface/transformers/issues/10704

from transformers import GPT2Tokenizer, GPT2LMHeadModel
import torch

device = 'cuda' if torch.cuda.is_available() else 'cpu'

tokenizer = GPT2Tokenizer.from_pretrained('finetuned')
tokenizer.padding_side = "left"
tokenizer.pad_token = tokenizer.eos_token
model = GPT2LMHeadModel.from_pretrained('finetuned').to(device)
print("model loaded")

# this is a single input batch with size 3
texts = ["From off a hill whose concave womb", "Another try", "A third test"]

encoding = tokenizer(texts, padding=True, return_tensors='pt').to(device)
with torch.no_grad():
    generated_ids = model.generate(**encoding, max_length=100)
generated_texts = tokenizer.batch_decode(
    generated_ids, skip_special_tokens=True)

print(generated_texts)
  • model inference runs on even small gpus or on cpus without any more additional changes

Finetune GPT-NEO (2.7 Billion Parameters)

This works now. I tested it with a server with one V100 GPU (16 GB VRAM) and 78 GB normal RAM, but it might not actually need that much RAM.

Add your training data like you would for GPT2-xl:

  • replace the example train.txt and validation.txt files in the folder with your own training data with the same names and then run python text2csv.py. This converts your .txt files into one column csv files with a "text" header and puts all the text into a single line. We need to use .csv files instead of .txt files, because Huggingface's dataloader removes line breaks when loading text from a .txt file, which does not happen with the .csv files.

  • If you want to feed the model separate examples instead of one continuous block of text, you need to pack each of your examples into an separate line in the csv train and validation files.

  • Be careful with the encoding of your text. If you don't clean your text files or if just copy text from the web into a text editor, the dataloader from the datasets library might not load them.

  • Be sure to either login into wandb.ai with wandb login or uninstall it completely. Otherwise it might cause a memory error during the run.

Then start the training run this command:

deepspeed --num_gpus=1 run_clm.py \
--deepspeed ds_config_gptneo.json \
--model_name_or_path EleutherAI/gpt-neo-2.7B \
--train_file train.csv \
--validation_file validation.csv \
--do_train \
--do_eval \
--fp16 \
--overwrite_cache \
--evaluation_strategy="steps" \
--output_dir finetuned \
--num_train_epochs 1 \
--eval_steps 15 \
--gradient_accumulation_steps 2 \
--per_device_train_batch_size 4 \
--use_fast_tokenizer False \
--learning_rate 5e-06 \
--warmup_steps 10
  • This uses a smaller "allgather_bucket_size" setting in the ds_config_gptneo.json file and a smaller batch size to further reduce gpu memory.
  • You might want to change and try hyperparameters to be closer to the orignal EleutherAi training config. You can find these here.

Generate text with a GPT-NEO 2.7 Billion Parameters model

I provided a script, that allows you to interactively prompt your GPT-NEO model. If you just want to sample from the pretrained model without finetuning it yourself, replace "finetuned" with "EleutherAI/gpt-neo-2.7B". Start it with this:

python run_generate_neo.py finetuned

Or use this snippet to generate text from your finetuned model within your code:

# credit to Suraj Patil - https://github.com/huggingface/transformers/pull/10848 - modified

from transformers import GPTNeoForCausalLM, AutoTokenizer

model = GPTNeoForCausalLM.from_pretrained("finetuned").to("cuda")
tokenizer = AutoTokenizer.from_pretrained("finetuned")

text = "From off a hill whose concave"
ids = tokenizer(text, return_tensors="pt").input_ids.to("cuda")

max_length = 400 + ids.shape[1] # add the length of the prompt tokens to match with the mesh-tf generation

gen_tokens = model.generate(
  ids,
  do_sample=True,
  min_length=max_length,
  max_length=max_length,
  temperature=0.9,
  use_cache=True
)
gen_text = tokenizer.batch_decode(gen_tokens)[0]
print(gen_text)

(Optional) Configuration

You can change the learning rate, weight decay and warmup by setting them as flags to the training command. Warm up and learning rates in the config are ignored, as the script always uses the Huggingface optimizer/trainer default values. If you want to overwrite them you need to use flags. You can check all the explanations here:

https://huggingface.co/transformers/master/main_classes/trainer.html#deepspeed

The rest of the training arguments can be provided as a flags and are all listed here:

https://huggingface.co/transformers/master/main_classes/trainer.html#trainingarguments

Plugin repository for Macast

Macast-plugins Plugin repository for Macast. How to use third-party player plugin Download Macast from GitHub Release. Download the plugin you want fr

109 Jan 04, 2023
Spam filtering made easy for you

spammy Author: Tasdik Rahman Latest version: 1.0.3 Contents 1 Overview 2 Features 3 Example 3.1 Accuracy of the classifier 4 Installation 4.1 Upgradin

Tasdik Rahman 137 Dec 18, 2022
Perform sentiment analysis on textual data that people generally post on websites like social networks and movie review sites.

Sentiment Analyzer The goal of this project is to perform sentiment analysis on textual data that people generally post on websites like social networ

Madhusudan.C.S 53 Mar 01, 2022
Modeling cumulative cases of Covid-19 in the US during the Covid 19 Delta wave using Bayesian methods.

Introduction The goal of this analysis is to find a model that fits the observed cumulative cases of COVID-19 in the US, starting in Mid-July 2021 and

Alexander Keeney 1 Jan 05, 2022
Ecco is a python library for exploring and explaining Natural Language Processing models using interactive visualizations.

Visualize, analyze, and explore NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BER

Jay Alammar 1.6k Dec 25, 2022
A look-ahead multi-entity Transformer for modeling coordinated agents.

baller2vec++ This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec++: A Look-Ahead Multi-Entity Transformer For Modeling

Michael A. Alcorn 30 Dec 16, 2022
RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2

RoNER RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2. It is meant to be an easy to use, hi

Stefan Dumitrescu 9 Nov 07, 2022
ChatterBot is a machine learning, conversational dialog engine for creating chat bots

ChatterBot ChatterBot is a machine-learning based conversational dialog engine build in Python which makes it possible to generate responses based on

Gunther Cox 12.8k Jan 03, 2023
Words-per-minute - A terminal app written in python utilizing the curses module that tests the user's ability to type

words-per-minute A terminal app written in python utilizing the curses module th

Tanim Islam 1 Jan 14, 2022
Applying "Load What You Need: Smaller Versions of Multilingual BERT" to LaBSE

smaller-LaBSE LaBSE(Language-agnostic BERT Sentence Embedding) is a very good method to get sentence embeddings across languages. But it is hard to fi

Jeong Ukjae 13 Sep 02, 2022
Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

CvarAdversarialRL Official code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning". Initial setup Create a virtual

Mathieu Godbout 1 Nov 19, 2021
Conversational text Analysis using various NLP techniques

Conversational text Analysis using various NLP techniques

Rita Anjana 159 Jan 06, 2023
ReCoin - Restoring our environment and businesses in parallel

Shashank Ojha, Sabrina Button, Abdellah Ghassel, Joshua Gonzales "Reduce Reuse R

sabrina button 1 Mar 14, 2022
Data and code to support "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley)

anlp21 Course materials for "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley) Syllabus: http://people.ischool.berkeley.edu/~dba

David Bamman 48 Dec 06, 2022
An open source framework for seq2seq models in PyTorch.

pytorch-seq2seq Documentation This is a framework for sequence-to-sequence (seq2seq) models implemented in PyTorch. The framework has modularized and

International Business Machines 1.4k Jan 02, 2023
Datasets of Automatic Keyphrase Extraction

This repository contains 20 annotated datasets of Automatic Keyphrase Extraction made available by the research community. Following are the datasets and the original papers that proposed them. If yo

LIAAD - Laboratory of Artificial Intelligence and Decision Support 163 Dec 23, 2022
An example project using OpenPrompt under pytorch-lightning for prompt-based SST2 sentiment analysis model

pl_prompt_sst An example project using OpenPrompt under the framework of pytorch-lightning for a training prompt-based text classification model on SS

Zhiling Zhang 5 Oct 21, 2022
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.

Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode

Nishant Banjade 7 Sep 22, 2022
Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks

wav2vec_finetune Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks Initial test: gender recognition on this dat

8 Aug 11, 2022
BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia.

BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia. Its intended use is as input for neural models in natural languag

Benjamin Heinzerling 1.1k Jan 03, 2023