CCCL: Contrastive Cascade Graph Learning.

Overview

CCGL: Contrastive Cascade Graph Learning

This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as described in the paper:

CCGL: Contrastive Cascade Graph Learning
Xovee Xu, Fan Zhou, Kunpeng Zhang, and Siyuan Liu
Submitted for review
arXiv:2107.12576

Dataset

You can download all five datasets (Weibo, Twitter, ACM, APS, and DBLP) via any one of the following links:

Google Drive Dropbox Onedrive Tencent Drive Baidu Netdisk
trqg

Environmental Settings

Our experiments are conducted on Ubuntu 20.04, a single NVIDIA 1080Ti GPU, 48GB RAM, and Intel i7 8700K. CCGL is implemented by Python 3.7, TensorFlow 2.3, Cuda 10.1, and Cudnn 7.6.5.

Create a virtual environment and install GPU-support packages via Anaconda:

# create virtual environment
conda create --name=ccgl python=3.7 cudatoolkit=10.1 cudnn=7.6.5

# activate virtual environment
conda activate ccgl

# install other dependencies
pip install -r requirements.txt

Usage

Here we take Weibo dataset as an example to demonstrate the usage.

Preprocess

Step 1: divide, filter, generate labeled and unlabeled cascades:

cd ccgl
# labeled cascades
python src/gene_cas.py --input=./datasets/weibo/ --unlabel=False
# unlabeled cascades
python src/gene_cas.py --input=./datasets/weibo/ --unlabel=True

Step 2: augment both labeled and unlabeled cascades (here we use the AugSIM strategy):

python src/augmentor.py --input=./datasets/weibo/ --aug_strategy=AugSIM

Step 3: generate cascade embeddings:

python src/gene_emb.py --input=./datasets/weibo/ 

Pre-training

python src/pre_training.py --name=weibo-0 --input=./datasets/weibo/ --projection_head=4-1

The saved pre-training model is named as weibo-0.

Fine-tuning

python src/fine_tuning.py --name=weibo-0 --num=0 --input=./datasets/weibo/ --projection_head=4-1

Here we load the pre-trained model weibo-0 and save the teacher network as weibo-0-0.

Distillation

python src/distilling.py --name=weibo-0-0 --num=0 --input=./datasets/weibo/ --projection_head=4-1

Here we load the teacher network weibo-0-0 and save the student network as weibo-0-0-student-0.

(Optional) Run the Base model

python src/base_model.py --input=./datasets/weibo/ 

CCGL model weights

We provide pre-trained, fine-tuned, and distilled CCGL model weights. Please see details in the following table.

Model Dataset Label Fraction Projection Head MSLE Weights
Pre-trained CCGL model Weibo 100% 4-1 - Download
Pre-trained CCGL model Weibo 10% 4-4 - Download
Pre-trained CCGL model Weibo 1% 4-3 - Download
Fine-tuned CCGL model Weibo 100% 4-1 2.70 Download
Fine-tuned CCGL model Weibo 10% 4-4 2.87 Download
Fine-tuned CCGL model Weibo 1% 4-3 3.30 Download

Load weights into the model:

# construct model, carefully check projection head designs:
# use different number of Dense layers
...
# load weights for fine-tuning, distillation, or evaluation
model.load_weights(weight_path)

Check src/fine_tuning.py and src/distilling.py for weights loading examples.

Default hyper-parameter settings

Unless otherwise specified, we use following default hyper-parameter settings.

Param Value Param Value
Augmentation strength 0.1 Pre-training epochs 30
Augmentation strategy AugSIM Projection Head (100%) 4-1
Batch size 64 Projection Head (10%) 4-4
Early stopping patience 20 Projection Head (1%) 4-3
Embedding dimension 64 Model size 128 (4x)
Learning rate 5e-4 Temperature 0.1

Change Logs

  • Jul 21, 2021: fix a bug and some annotations

Cite

If you find our paper & code are useful for your research, please consider citing us 😘 :

@article{xu2021ccgl, 
  author = {Xovee Xu and Fan Zhou and Kunpeng Zhang and Siyuan Liu}, 
  title = {{CCGL}: Contrastive Cascade Graph Learning}, 
  journal = {arXiv:2107.12576},
  year = {2021}, 
}

We also have a survey paper you might be interested:

@article{zhou2021survey,
  author = {Fan Zhou and Xovee Xu and Goce Trajcevski and Kunpeng Zhang}, 
  title = {A Survey of Information Cascade Analysis: Models, Predictions, and Recent Advances}, 
  journal = {ACM Computing Surveys (CSUR)}, 
  volume = {54},
  number = {2},
  year = {2021},
  articleno = {27},
  numpages = {36},
  doi = {10.1145/3433000},
}

Acknowledgment

We would like to thank Xiuxiu Qi, Ce Li, Qing Yang, and Wenxiong Li for sharing their computing resources and help us to test the codes. We would also like to show our gratitude to the authors of SimCLR (and Sayak Paul), node2vec, DeepHawkes, and others, for sharing their codes and datasets.

Contact

For any questions please open an issue or drop an email to: xovee at ieee.org

Owner
Xovee Xu
PhD student in UESTC, Chengdu, China.
Xovee Xu
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
A strongly-typed genetic programming framework for Python

monkeys "If an army of monkeys were strumming on typewriters they might write all the books in the British Museum." monkeys is a framework designed to

H. Chase Stevens 115 Nov 27, 2022
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Anshul Paigwar 114 Dec 29, 2022
Learning Synthetic Environments and Reward Networks for Reinforcement Learning

Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (

AutoML-Freiburg-Hannover 16 Sep 02, 2022
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 1.9.0 ubuntu20/python3.9/pip ubuntu20/python3.8/p

ESPnet 5.9k Jan 04, 2023
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

185 Dec 26, 2022
An implementation of the AlphaZero algorithm for Gomoku (also called Gobang or Five in a Row)

AlphaZero-Gomoku This is an implementation of the AlphaZero algorithm for playing the simple board game Gomoku (also called Gobang or Five in a Row) f

Junxiao Song 2.8k Dec 26, 2022
DAT4 - General Assembly's Data Science course in Washington, DC

DAT4 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15). Instructors: Sinan Ozdemir

Kevin Markham 779 Dec 25, 2022
CMP 414/765 course repository for Spring 2022 semester

CMP414/765: Artificial Intelligence Spring2021 This is the GitHub repository for course CMP 414/765: Artificial Intelligence taught at The City Univer

ch00226855 4 May 16, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
Official PyTorch implementation of the NeurIPS 2021 paper StyleGAN3

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Eugenio Herrera 92 Nov 18, 2022
RNN Predict Street Commercial Vitality

RNN-for-Predicting-Street-Vitality Code and dataset for Predicting the Vitality of Stores along the Street based on Business Type Sequence via Recurre

Zidong LIU 1 Dec 15, 2021
Towards Representation Learning for Atmospheric Dynamics (AtmoDist)

Towards Representation Learning for Atmospheric Dynamics (AtmoDist) The prediction of future climate scenarios under anthropogenic forcing is critical

Sebastian Hoffmann 4 Dec 15, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
The implementation code for "DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction"

DAGAN This is the official implementation code for DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruct

TensorLayer Community 159 Nov 22, 2022
Naszilla is a Python library for neural architecture search (NAS)

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow

270 Jan 03, 2023
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021
Code for the paper "Asymptotics of ℓ2 Regularized Network Embeddings"

README Code for the paper Asymptotics of L2 Regularized Network Embeddings. Requirements Requires Stellargraph 1.2.1, Tensorflow 2.6.0, scikit-learm 0

Andrew Davison 0 Jan 06, 2022