This is the official code release for the paper Shape and Material Capture at Home

Overview

Shape and Material Capture at Home, CVPR 2021.

Daniel Lichy, Jiaye Wu, Soumyadip Sengupta, David Jacobs

A bare-bones capture setup

Overview

This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashlight or camera with flash.

We provide:

  • The trained RecNet model.
  • Code to test on the DiLiGenT dataset.
  • Code to test on our dataset from the paper.
  • Code to test on your own dataset.
  • Code to train a new model, including code for visualization and logging.

Dependencies

This project uses the following dependencies:

  • Python 3.8
  • PyTorch (version = 1.8.1)
  • torchvision
  • numpy
  • scipy
  • opencv
  • OpenEXR (only required for training)

The easiest way to run the code is by creating a virtual environment and installing the dependences with pip e.g.

# Create a new python3.8 environment named py3.8
virtualenv py3.8 -p python3.8

# Activate the created environment
source py3.8/bin/activate

#upgrade pip
pip install --upgrade pip

# To install dependencies 
python -m pip install -r requirements.txt
#or
python -m pip install -r requirements_no_exr.txt

Capturing you own dataset

Multi-image captures

The video below shows how to capture the (up to) six images for you own dataset. Angles are approximate and can be estimated by eye. The camera should be approximately 1 to 4 feet from the object. The flashlight should be far enough from the object such that the entire object is in the illumination cone of the flashlight.

We used this flashlight, but any bright flashlight should work. We used this tripod which comes with a handy remote for iPhone and Android.

Please see the Project Page for a higher resolution version of this video.

Example reconstructions:


Single image captures

Our network also provides state-of-the-art results for reconstructing shape and material from a single flash image.

Examples captured with just an iPhone with flash enabled in a dim room (complete darkness is not needed):


Mask Making

For best performance you should supply a segmentation mask with your image. For our paper we used https://github.com/saic-vul/fbrs_interactive_segmentation which enables mask making with just a few clicks.

Normal prediction results are reasonable without the mask, but integrating normals to a mesh without the mask can be challenging.

Test RecNet on the DiLiGenT dataset

# Download and prepare the DiLiGenT dataset
sh scripts/prepare_diligent_dataset.sh

# Test on 3 DiLiGenT images from the front, front-right, and front-left
# if you only have CPUs remove the --gpu argument
python eval_diligent.py results_path --gpu

# To test on a different subset of DiLiGenT images use the argument --image_nums n1 n2 n3 n4 n5 n6
# where n1 to n6 are the image indices of the right, front-right, front, front-left, left, and above
# images, respectively. For images that are no present set the image number to -1
# e.g to test on only the front image (image number 51) run
python eval_diligent.py results_path --gpu --image_nums -1 -1 51 -1 -1 -1 

Test on our dataset/your own dataset

The easiest way to test on you own dataset and our dataset is to format it as follows:

dataset_dir:

  • sample_name1:
    • 0.ext (right)
    • 1.ext (front-right)
    • 2.ext (front)
    • 3.ext (front-left)
    • 4.ext (left)
    • 5.ext (above)
    • mask.ext
  • sample_name2: (if not all images are present just don't add it to the directory)
    • 2.ext (front)
    • 3.ext (front-left)
  • ...

Where .ext is the image extention e.g. .png, .jpg, .exr

For an example of formating your own dataset please look in data/sample_dataset

Then run:

python eval_standard.py results_path --dataset_root path_to_dataset_dir --gpu

# To test on a sample of our dataset run
python eval_standard.py results_path --dataset_root data/sample_dataset --gpu

Download our real dataset

Coming Soon...

Integrating Normal Maps and Producing a Mesh

We include a script to integrate normals and produce a ply mesh with per vertex albedo and roughness.

After running eval_standard.py or eval_diligent.py there with be a file results_path/images/integration_data.csv Running the following command with produce a ply mesh in results_path/images/sample_name/mesh.ply

python integrate_normals.py results_path/images/integration_data.csv --gpu

This is the most time intensive part of the reconstruction and takes about 3 minutes to run on GPU and 5 minutes on CPU.

Training

To train RecNet from scratch:

python train.py log_dir --dr_dataset_root path_to_dr_dataset --sculpt_dataset_root path_to_sculpture_dataset --gpu

Download the training data

Coming Soon...

FAQ

Q1: What should I do if I have problem running your code?

  • Please create an issue if you encounter errors when trying to run the code. Please also feel free to submit a bug report.

Citation

If you find this code or the provided models useful in your research, please cite it as:

@inproceedings{lichy_2021,
  title={Shape and Material Capture at Home},
  author={Lichy, Daniel and Wu, Jiaye and Sengupta, Soumyadip and Jacobs, David W.},
  booktitle={CVPR},
  year={2021}
}

Acknowledgement

Code used for downloading and loading the DiLiGenT dataset is adapted from https://github.com/guanyingc/SDPS-Net

Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
BackgroundRemover lets you Remove Background from images and video with a simple command line interface

BackgroundRemover BackgroundRemover is a command line tool to remove background from video and image, made by nadermx to power https://BackgroundRemov

Johnathan Nader 1.7k Dec 30, 2022
DIRL: Domain-Invariant Representation Learning

DIRL: Domain-Invariant Representation Learning Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the

Ajay Tanwani 30 Nov 07, 2022
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicity.

Fast Face Classification (F²C) This is the code of our paper An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicit

33 Jun 27, 2021
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
This is a clean and robust Pytorch implementation of DQN and Double DQN.

DQN/DDQN-Pytorch This is a clean and robust Pytorch implementation of DQN and Double DQN. Here is the training curve: All the experiments are trained

XinJingHao 15 Dec 27, 2022
(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

NeRF--: Neural Radiance Fields Without Known Camera Parameters Project Page | Arxiv | Colab Notebook | Data Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min

Active Vision Laboratory 411 Dec 26, 2022
The code used for the free [email protected] Webinar series on Reinforcement Learning in Finance

Reinforcement Learning in Finance [email protected] Webinar This repository provides the code f

Yves Hilpisch 62 Dec 22, 2022
PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation

deep-hist PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation PyT

Winfried Lötzsch 10 Dec 06, 2022
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Dataset used in "PlantDoc: A Dataset for Visual Plant Disease Detection" accepted in CODS-COMAD 2020

PlantDoc: A Dataset for Visual Plant Disease Detection This repository contains the Cropped-PlantDoc dataset used for benchmarking classification mode

Pratik Kayal 109 Dec 29, 2022
Deploy optimized transformer based models on Nvidia Triton server

🤗 Hugging Face Transformer submillisecond inference 🤯 and deployment on Nvidia Triton server Yes, you can perfom inference with transformer based mo

Lefebvre Sarrut Services 1.2k Jan 05, 2023
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

------ Update September 2018 ------ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such t

Hugging Face 865 Dec 24, 2022
Auto-Encoding Score Distribution Regression for Action Quality Assessment

DAE-AQA It is an open source program reference to paper Auto-Encoding Score Distribution Regression for Action Quality Assessment. 1.Introduction DAE

13 Nov 16, 2022