git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Related tags

Deep Learningattattr
Overview

Self-Attention Attribution

This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Interactions Inside Transformer. It includes the code for generating the self-attention attribution score, pruning attention heads with our method, constructing the attribution tree and extracting the adversarial triggers. All of our experiments are conducted on bert-base-cased model, our methods can also be easily transfered to other Transformer-based models.

Requirements

  • Python version >= 3.5
  • Pytorch version == 1.1.0
  • networkx == 2.3

We recommend you to run the code using the docker under Linux:

docker run -it --rm --runtime=nvidia --ipc=host --privileged pytorch/pytorch:1.1.0-cuda10.0-cudnn7.5-devel bash

Then install the following packages with pip:

pip install --user networkx==2.3
pip install --user matplotlib==3.1.0
pip install --user tensorboardX six numpy tqdm scikit-learn

You can install attattr from source:

git clone https://github.com/YRdddream/attattr
cd attattr
pip install --user --editable .

Download Pre-Finetuned Models and Datasets

Before running self-attention attribution, you can first fine-tune bert-base-cased model on a downstream task (such as MNLI) by running the file run_classifier_orig.py. We also provide the example datasets and the pre-finetuned checkpoints at Google Drive.

Get Self-Attention Attribution Scores

Run the following command to get the self-attention attribution score and the self-attention score.

python examples/generate_attrscore.py --task_name ${task_name} --data_dir ${data_dir} \
       --bert_model bert-base-cased --batch_size 16 --num_batch 4 \
       --model_file ${model_file} --example_index ${example_index} \
       --get_att_attr --get_att_score --output_dir ${output_dir}

Construction of Attribution Tree

When you get the self-attribution scores of a target example, you could construct the attribution tree. We recommend you to run the file get_tokens_and_pred.py to summarize the data, or you can manually change the value of tokens in attribution_tree.py.

python examples/attribution_tree.py --attr_file ${attr_file} --tokens_file ${tokens_file} \
       --task_name ${task_name} --example_index ${example_index} 

You can generate the attribution tree from the provided example.

python examples/attribution_tree.py --attr_file ${model_and_data}/mnli_example/attr_zero_base_exp16.json \
       --tokens_file ${model_and_data}/mnli_example/tokens_and_pred_100.json \
       --task_name mnli --example_index 16

Self-Attention Head Pruning

We provide the code of pruning attention heads with both our attribution method and the Taylor expansion method. Pruning heads with our method.

python examples/prune_head_with_attr.py --task_name ${task_name} --data_dir ${data_dir} \
       --bert_model bert-base-cased --model_file ${model_file}  --output_dir ${output_dir}

Pruning heads with Taylor expansion method.

python examples/prune_head_with_taylor.py --task_name ${task_name} --data_dir ${data_dir} \
       --bert_model bert-base-cased --model_file ${model_file}  --output_dir ${output_dir}

Adversarial Attack

First extract the most important connections from the training dataset.

python examples/run_adver_connection.py --task_name ${task_name} --data_dir ${data_dir} \
       --bert_model bert-base-cased --batch_size 16 --num_batch 4 --zero_baseline \
       --model_file ${model_file} --output_dir ${output_dir}

Then use these adversarial triggers to attack the original model.

python examples/run_adver_evaluate.py --task_name ${task_name} --data_dir ${data_dir} \
       --bert_model bert-base-cased --model_file ${model_file} \
       --output_dir ${output_dir} --pattern_file ${pattern_file}

Reference

If you find this repository useful for your work, you can cite the paper:

@inproceedings{attattr,
  author = {Yaru Hao and Li Dong and Furu Wei and Ke Xu},
  title = {Self-Attention Attribution: Interpreting Information Interactions Inside Transformer},
  booktitle = {The Thirty-Fifth {AAAI} Conference on Artificial Intelligence},
  publisher = {{AAAI} Press},
  year      = {2021},
  url       = {https://arxiv.org/pdf/2004.11207.pdf}
}
Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Deepak Nandwani 1 Dec 31, 2021
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
A time series processing library

Timeseria Timeseria is a time series processing library which aims at making it easy to handle time series data and to build statistical and machine l

Stefano Alberto Russo 11 Aug 08, 2022
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

Frederick Wang 3 Apr 26, 2022
A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.

DrQA A pytorch implementation of the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions (DrQA). Reading comprehension is a task to produ

Runqi Yang 394 Nov 08, 2022
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
Luminaire is a python package that provides ML driven solutions for monitoring time series data.

A hands-off Anomaly Detection Library Table of contents What is Luminaire Quick Start Time Series Outlier Detection Workflow Anomaly Detection for Hig

Zillow 670 Jan 02, 2023
Resources related to our paper "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain"

CLIN-X (CLIN-X-ES) & (CLIN-X-EN) This repository holds the companion code for the system reported in the paper: "CLIN-X: pre-trained language models a

Bosch Research 4 Dec 05, 2022
Pathdreamer: A World Model for Indoor Navigation

Pathdreamer: A World Model for Indoor Navigation This repository hosts the open source code for Pathdreamer, to be presented at ICCV 2021. Paper | Pro

Google Research 122 Jan 04, 2023
[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"

ASSL This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR)

Huan Wang 47 Nov 28, 2022
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

32 Sep 21, 2022
Facial expression detector

A tensorflow convolutional neural network model to detect facial expressions.

Carlos Tardón Rubio 5 Apr 20, 2022
Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation

Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation [Arxiv] [Video] Evaluation code for Unrestricted Facial Geometry Reconstr

Matan Sela 242 Dec 30, 2022
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
Non-Metric Space Library (NMSLIB): An efficient similarity search library and a toolkit for evaluation of k-NN methods for generic non-metric spaces.

Non-Metric Space Library (NMSLIB) Important Notes NMSLIB is generic but fast, see the results of ANN benchmarks. A standalone implementation of our fa

2.9k Jan 04, 2023
This is the source code of the solver used to compete in the International Timetabling Competition 2019.

ITC2019 Solver This is the source code of the solver used to compete in the International Timetabling Competition 2019. Building .NET Core (2.1 or hig

Edon Gashi 8 Jan 22, 2022
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
Fine-Tune EleutherAI GPT-Neo to Generate Netflix Movie Descriptions in Only 47 Lines of Code Using Hugginface And DeepSpeed

GPT-Neo-2.7B Fine-Tuning Example Using HuggingFace & DeepSpeed Installation cd venv/bin ./pip install -r ../../requirements.txt ./pip install deepspe

Nikita 180 Jan 05, 2023
YoloAll is a collection of yolo all versions. you you use YoloAll to test yolov3/yolov5/yolox/yolo_fastest

官方讨论群 QQ群:552703875 微信群:15158106211(先加作者微信,再邀请入群) YoloAll项目简介 YoloAll是一个将当前主流Yolo版本集成到同一个UI界面下的推理预测工具。可以迅速切换不同的yolo版本,并且可以针对图片,视频,摄像头码流进行实时推理,可以很方便,直观

DL-Practise 244 Jan 01, 2023