Resources related to our paper "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain"

Related tags

Deep Learningclin_x
Overview

CLIN-X

(CLIN-X-ES) & (CLIN-X-EN)

This repository holds the companion code for the system reported in the paper:

"CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain" by Lukas Lange, Heike Adel, Jannik Strötgen and Dietrich Klakow.

The paper wcan be found here. The code allows the users to reproduce and extend the results reported in the paper. Please cite the above paper when reporting, reproducing or extending the results.

@inproceedings{lange-etal-2021-clin-x,
      author    = {Lukas Lange and
                   Heike Adel and
                   Jannik Str{\"{o}}tgen and
                   Dietrich Klakow},
      title     = {"CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain},
      year={2021},
      url={https://arxiv.org/abs/2112.08754}
}

In case of questions, please contact the authors as listed on the paper.

Purpose of the project

This software is a research prototype, solely developed for and published as part of the publication cited above. It will neither be maintained nor monitored in any way.

The CLIN-X language models

As part of this work, two XLM-R were adapted to the clinical domain The models can be found here:

  • CLIN-X ES: Spanish clinical XLM-R (link)
  • CLIN-X EN: English clinical XLM-R (link)

The CLIN-X models are open-sourced under the CC-BY 4.0 license. See the LICENSE_models file for details.

Prepare the conda environment

The code requires some python libraries to work:

conda create -n clin-x python==3.8.5
pip install flair==0.8 transformers==4.6.1 torch==1.8.1 scikit-learn==0.23.1 scipy==1.6.3 numpy==1.20.3 nltk tqdm seaborn matplotlib

Masked-Language-Modeling training

The models were trained using the huggingface MLM script that can be found here. The script was called as follows:

python -m torch.distributed.launch --nproc_per_node 8 run_mlm.py  \
--model_name_or_path xlm-roberta-large  \
--train_file data/spanisch_clinical_train.txt  \
--validation_file data/spanisch_clinical_valid.txt  \
--do_train   --do_eval  \
--output_dir models/xlm-roberta-large-spanisch-clinical-domain/  \
--fp16  \
--per_device_train_batch_size 4 --per_device_eval_batch_size 4  \
--save_strategy steps --save_steps 10000

Using the CLIN-X model with our propose model architecture (as reported in Table 7)

The following will describe our different scripts to reproduce the results. See each of the script files for detailed information on the input arguments.

Tokenize and split the data

python tokenize_files.py --input_path path/to/input/files/ --output_path /path/to/bio_files/
python create_data_splits.py --train_files /path/to/bio_files/ --method random --output_dir /path/to/split_files/

Train the model (using random data splits)

The following command trains on model on four splits (1,2,3,4) and uses the remaining split (5) for validation. For different split combinations adjust the list of --training_files and the --dev_file arguments accordingly.

python train_our_model_architecture.py   \
--data_path /path/to/split_files/  \
--train_files random_split_1.txt,random_split_2.txt,random_split_3.txt,random_split_4.txt  \
--dev_file random_split_5.txt  \
--model xlm-roberta-large-spanish-clinical  \
--name model_name --storage_path models

Get ensemble predictions

For all models, get the predictions on the test set as following:

python get_test_predictions.py --name models/model_name --conll_path /path/to/bio_files/ --out_path predictions/model_name/

Then, combine different models into one ensemble. Arguments: Output path + List of model predictions

python create_ensemble_data.py predictions/ensemble1 predictions/model_name/ predictions/model_name_2/ ...

Using the CLIN-X model (as reported in Table 3)

While we recommand the usage of our model architecture, the CLIN-X models can be used in many other architectures. In the paper, we compare to the standard transformer sequnece labeling models as proposed by Devlin et al. For this, we provide the train_standard_model_architecture.py script

python train_standard_model_architecture.py  \
--data_path /path/to/bio_files/  \
--model xlm-roberta-large-spanish-clinical  \
--name model_name --storage_path models

License

The CLIN-X code is open-sourced under the AGPL-3.0 license. See the LICENSE file for details.

For a list of other open source components included in CLIN-X, see the file 3rd-party-licenses.txt.

Owner
Bosch Research
Bosch Research
Pytorch implementation of Cut-Thumbnail in the paper Cut-Thumbnail:A Novel Data Augmentation for Convolutional Neural Network.

Cut-Thumbnail (Accepted at ACM MULTIMEDIA 2021) Tianshu Xie, Xuan Cheng, Xiaomin Wang, Minghui Liu, Jiali Deng, Tao Zhou, Ming Liu This is the officia

3 Apr 12, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
QI-Q RoboMaster2022 CV Algorithm

QI-Q RoboMaster2022 CV Algorithm

2 Jan 10, 2022
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17k Jan 02, 2023
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al.

nam-pytorch Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al. [abs, pdf] Installation You can access nam-pytorch vi

Rishabh Anand 11 Mar 14, 2022
🤖 Project template for your next awesome AI project. 🦾

🤖 AI Awesome Project Template 👋 Template author You may want to adjust badge links in a README.md file. 💎 Installation with pip Installation is as

Wiktor Łazarski 18 Nov 23, 2022
Repository for the AugmentedPCA Python package.

Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that

Billy Carson 6 Dec 07, 2022
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

Xinyu Yi 261 Dec 31, 2022
Active window border replacement for window managers.

xborder Active window border replacement for window managers. Usage git clone https://github.com/deter0/xborder cd xborder chmod +x xborders ./xborder

deter 250 Dec 30, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 01, 2023
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
Kaggle Ultrasound Nerve Segmentation competition [Keras]

Ultrasound nerve segmentation using Keras (1.0.7) Kaggle Ultrasound Nerve Segmentation competition [Keras] #Install (Ubuntu {14,16}, GPU) cuDNN requir

179 Dec 28, 2022
Unofficial pytorch-lightning implement of Mip-NeRF

mipnerf_pl Unofficial pytorch-lightning implement of Mip-NeRF, Here are some results generated by this repository (pre-trained models are provided bel

Jianxin Huang 159 Dec 23, 2022