Cloud-based recommendation system

Overview

Cloud-based recommendation system

This project is based on cloud services to create data lake, ETL process, train and deploy learning model to implement a recommendation system.

Purpose

One Web app can return if the consumer will buy the product or not when providing user ID and corresponding product SKU.

Services

This project will use services:

AWS: lambda function, Step functions, Glue (job,notebook,crawler), Athena, SNS, S3, Sagemaker, IAM, Dynamodb, API Gateway.

Confluent cloud (kafka) for streaming data.

Project description

  1. Create a bucket on S3 as the storage location of the data lake, store the raw data in the bucket (raw data zone), and then return the data after ETL to the same bucket (curated zone).

  2. Preview the data, determine the data is useful and meaningful for our project. Use AWS Glue crawler to grab corresponding data catalog (in created database and generated table info). Use Athena to do SQL query. This like Apache Hive, it does not change raw data, but do operations above the raw data.

  3. Create and store stream data. Create a kafka topic on Clonfluent cloud and set schema registry for the corresponding stream data, schema sets as confluent_cloud_kafka-->confluent_kafka_topic_schema.json. Set the kafka producer as confluent_cloud_kafka-->confluent_kafka_producer_lambda.py to push stream data to corresponding kafka topic in different partitions (because this project does not have exact source giving real stream data, we produce stream data manually). Set the consumer (confluent connector with AWS lambda) as confluent_cloud_kafka-->confluent_kafka_consumer_lambda.py to poll the stream data in kafka topic and store them in Dynamodb table.

  4. ETL process. Use lambda function to do data transformation operations based on SQL, corresponding scripts in file lambda_functions(ETL). Create Glue job to integrate new dataset and store in curated zone in data lake, scripts is in glue_job-->glue_job_ETL.py. Use step fuctions to orchestrate ETL workflow based on above lambda functions, ASL script is in step_function(workflow)-->step_functions_for_curated.json.

    This part is based on spark, and it is similar with the project in repo: https://github.com/Yi-Ding111/spark-ETL-based-databricks-aws.

  5. Train learning model (XGBoost). Use sagemaker notebook instance to do some kinds more operations like: EDA and feature engineering, use XGBoost framework to train the data, adjust parameters and try different attributes combinations to find the best one. Scripts is in sagemaker-->xgboost_deploy_sagemaker.ipynb.

  6. Deploy learning model. Get deploy endpoint after machine learning. Create lambda function to invoke the sagemaker endpoint to use the trained model, scripts is in sagemaker-->endpoint_interact_lambda.py. Let the lambda function integrate with API gatway (proxy integration) as the backend. Deploy the API gatewat and use the invoked URL for web applications to do interactions.

  7. Store the application output. Use SNS to publish the output to lambda and update the information into Dynamodb table, scripts is in sagemaker-->prediction_store_dynamodb.py


Acknowledgement

This project is completed with the guidance from Leo Lee (JR academy)


Author: YI DING, Leo Lee

Created at: Dec 2021

Contact: [email protected]

Owner
Yi Ding
Yi Ding
NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs.

NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in

420 Jan 04, 2023
The official implementation of "DGCN: Diversified Recommendation with Graph Convolutional Networks" (WWW '21)

DGCN This is the official implementation of our WWW'21 paper: Yu Zheng, Chen Gao, Liang Chen, Depeng Jin, Yong Li, DGCN: Diversified Recommendation wi

FIB LAB, Tsinghua University 37 Dec 18, 2022
Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks

SR-HGNN ICDM-2020 《Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks》 Environments python 3.8 pytorch-1.6 DGL 0.5.

xhc 9 Nov 12, 2022
This library intends to be a reference for recommendation engines in Python

Crab - A Python Library for Recommendation Engines

Marcel Caraciolo 85 Oct 04, 2021
Temporal Meta-path Guided Explainable Recommendation (WSDM2021)

Temporal Meta-path Guided Explainable Recommendation (WSDM2021) TMER Code of paper "Temporal Meta-path Guided Explainable Recommendation". Requirement

Yicong Li 13 Nov 30, 2022
Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems

DANSER-WWW-19 This repository holds the codes for Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recom

Qitian Wu 78 Dec 10, 2022
A framework for large scale recommendation algorithms.

A framework for large scale recommendation algorithms.

Alibaba Group - PAI 880 Jan 03, 2023
A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (WSDM 2021)

FairGNN A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (

31 Jan 04, 2023
A tensorflow implementation of the RecoGCN model in a CIKM'19 paper, titled with "Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation".

This repo contains a tensorflow implementation of RecoGCN and the experiment dataset Running the RecoGCN model python train.py Example training outp

xfl15 30 Nov 25, 2022
大规模推荐算法库,包含推荐系统经典及最新算法LR、Wide&Deep、DSSM、TDM、MIND、Word2Vec、DeepWalk、SSR、GRU4Rec、Youtube_dnn、NCF、GNN、FM、FFM、DeepFM、DCN、DIN、DIEN、DLRM、MMOE、PLE、ESMM、MAML、xDeepFM、DeepFEFM、NFM、AFM、RALM、Deep Crossing、PNN、BST、AutoInt、FGCNN、FLEN、ListWise等

(中文文档|简体中文|English) 什么是推荐系统? 推荐系统是在互联网信息爆炸式增长的时代背景下,帮助用户高效获得感兴趣信息的关键; 推荐系统也是帮助产品最大限度吸引用户、留存用户、增加用户粘性、提高用户转化率的银弹。 有无数优秀的产品依靠用户可感知的推荐系统建立了良好的口碑,也有无数的公司依

3.6k Dec 30, 2022
Learning Fair Representations for Recommendation: A Graph-based Perspective, WWW2021

FairGo WWW2021 Learning Fair Representations for Recommendation: A Graph-based Perspective As a key application of artificial intelligence, recommende

lei 39 Oct 26, 2022
The implementation of the submitted paper "Deep Multi-Behaviors Graph Network for Voucher Redemption Rate Prediction" in SIGKDD 2021 Applied Data Science Track.

DMBGN: Deep Multi-Behaviors Graph Networks for Voucher Redemption Rate Prediction The implementation of the accepted paper "Deep Multi-Behaviors Graph

10 Jul 12, 2022
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
Fast Python Collaborative Filtering for Implicit Feedback Datasets

Implicit Fast Python Collaborative Filtering for Implicit Datasets. This project provides fast Python implementations of several different popular rec

Ben Frederickson 3k Dec 31, 2022
Use Jupyter Notebooks to demonstrate how to build a Recommender with Apache Spark & Elasticsearch

Recommendation engines are one of the most well known, widely used and highest value use cases for applying machine learning. Despite this, while there are many resources available for the basics of

International Business Machines 793 Dec 18, 2022
Price-aware Recommendation with Graph Convolutional Networks,

PUP This is the official implementation of our ICDE'20 paper: Yu Zheng, Chen Gao, Xiangnan He, Yong Li, Depeng Jin, Price-aware Recommendation with Gr

S4rawBer2y 3 Oct 30, 2022
reXmeX is recommender system evaluation metric library.

A general purpose recommender metrics library for fair evaluation.

AstraZeneca 258 Dec 22, 2022
The source code for "Global Context Enhanced Graph Neural Network for Session-based Recommendation".

GCE-GNN Code This is the source code for SIGIR 2020 Paper: Global Context Enhanced Graph Neural Networks for Session-based Recommendation. Requirement

98 Dec 28, 2022
A library of metrics for evaluating recommender systems

recmetrics A python library of evalulation metrics and diagnostic tools for recommender systems. **This library is activly maintained. My goal is to c

Claire Longo 458 Jan 06, 2023
[ICDMW 2020] Code and dataset for "DGTN: Dual-channel Graph Transition Network for Session-based Recommendation"

DGTN: Dual-channel Graph Transition Network for Session-based Recommendation This repository contains PyTorch Implementation of ICDMW 2020 (NeuRec @ I

Yujia 25 Nov 17, 2022