Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems.

Overview

Documentation Status

Persine, the Persona Engine

Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems. It has a simple interface and encourages reproducible results. You tell Persine to drive around YouTube and it gives back a spreadsheet of what else YouTube suggests you watch!

Persine => Pers[ona Eng]ine

For example!

People have suggested that if you watch a few lightly political videos, YouTube starts suggesting more and more extreme content – but does it really?

The theory is difficult to test since it involves a lot of boring clicking and YouTube already knows what you usually watch. Persine to the rescue!

  1. Persine starts a new fresh-as-snow Chrome
  2. You provide a list of videos to watch and buttons to click (like, dislike, "next up" etc)
  3. As it watches and clicks more and more, YouTube customizes and customizes
  4. When you're all done, Persine will save your winding path and the video/playlist/channel recommendations to nice neat CSV files.

Beyond analysis, these files can be used to repeat the experiment again later, seeing if recommendations change by time, location, user history, etc.

If you didn't quite get enough data, don't worry – you can resume your exploration later, picking up right where you left off. Since each "persona" is based on Chrome profiles, all your cookies and history will be safely stored until your next run.

An actual example

See Persine in action on Google Colab.

Includes a few examples for analysis, too.

Installation

pip install persine

Persine will automatically install Selenium and BeautifulSoup for browsing/scraping, pandas for data analysis, and pillow for processing screenshots.

You will need to manually install chromedriver to allow Selenium to control Chrome. See details here

Quickstart

In this example, we start a new session by visiting a YouTube video and clicking the "next up" video three times to see where it leads us. We then save the results for later analysis.

from persine import PersonaEngine

engine = PersonaEngine(headless=False)

with engine.persona() as persona:
    persona.run("https://www.youtube.com/watch?v=hZw23sWlyG0")
    persona.run("youtube:next_up#3")
    persona.history.to_csv("history.csv")
    persona.recommendations.to_csv("recs.csv")

We turn off headless mode because it's fun to watch!

More examples, more features, more everything

Find the complete documentation here

Owner
Jonathan Soma
baby data journo wrangler @ledeprogram + @littlecolumns, cat wrangler @cat-republic
Jonathan Soma
RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation

RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation Pytorch based implemention of Relational Temporal

28 Dec 28, 2022
This is our implementation of GHCF: Graph Heterogeneous Collaborative Filtering (AAAI 2021)

GHCF This is our implementation of the paper: Chong Chen, Weizhi Ma, Min Zhang, Zhaowei Wang, Xiuqiang He, Chenyang Wang, Yiqun Liu and Shaoping Ma. 2

Chong Chen 53 Dec 05, 2022
Recommender systems are the systems that are designed to recommend things to the user based on many different factors

Recommender systems are the systems that are designed to recommend things to the user based on many different factors. The recommender system deals with a large volume of information present by filte

Happy N. Monday 3 Feb 15, 2022
A library of Recommender Systems

A library of Recommender Systems This repository provides a summary of our research on Recommender Systems. It includes our code base on different rec

MilaGraph 980 Jan 05, 2023
Incorporating User Micro-behaviors and Item Knowledge 59 60 3 into Multi-task Learning for Session-based Recommendation

MKM-SR Incorporating User Micro-behaviors and Item Knowledge into Multi-task Learning for Session-based Recommendation Paper data and code This is the

ciecus 38 Dec 05, 2022
Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks

SR-HGNN ICDM-2020 《Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks》 Environments python 3.8 pytorch-1.6 DGL 0.5.

xhc 9 Nov 12, 2022
Code for MB-GMN, SIGIR 2021

MB-GMN Code for MB-GMN, SIGIR 2021 For Beibei data, run python .\labcode.py For Tmall data, run python .\labcode.py --data tmall --rank 2 For IJCAI

32 Dec 04, 2022
Cloud-based recommendation system

This project is based on cloud services to create data lake, ETL process, train and deploy learning model to implement a recommendation system.

Yi Ding 1 Feb 02, 2022
Codes for AAAI'21 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'

DHCN Codes for AAAI 2021 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'. Please note that the default link

Xin Xia 124 Dec 14, 2022
ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms

ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms, including but not limited to click-through-rate (CTR) prediction, learning-to-ranking (LTR), and Matrix/Tensor Embeddi

LI, Wai Yin 90 Oct 08, 2022
Reinforcement Knowledge Graph Reasoning for Explainable Recommendation

Reinforcement Knowledge Graph Reasoning for Explainable Recommendation This repository contains the source code of the SIGIR 2019 paper "Reinforcement

Yikun Xian 197 Dec 28, 2022
Detecting Beneficial Feature Interactions for Recommender Systems, AAAI 2021

Detecting Beneficial Feature Interactions for Recommender Systems (L0-SIGN) This is our implementation for the paper: Su, Y., Zhang, R., Erfani, S., &

26 Nov 22, 2022
6002project-rl - An implemention of offline RL on recommender system

An implemention of offline RL on recommender system @author: misajie @update: 20

Tzay Lee 3 May 24, 2022
Bundle Graph Convolutional Network

Bundle Graph Convolutional Network This is our Pytorch implementation for the paper: Jianxin Chang, Chen Gao, Xiangnan He, Depeng Jin and Yong Li. Bun

55 Dec 25, 2022
A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (WSDM 2021)

FairGNN A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (

31 Jan 04, 2023
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 01, 2023
This is our Tensorflow implementation for "Graph-based Embedding Smoothing for Sequential Recommendation" (GES) (TKDE, 2021).

Graph-based Embedding Smoothing (GES) This is our Tensorflow implementation for the paper: Tianyu Zhu, Leilei Sun, and Guoqing Chen. "Graph-based Embe

Tianyu Zhu 15 Nov 29, 2022
Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems.

Persine, the Persona Engine Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems. It has a simple interface a

Jonathan Soma 87 Nov 29, 2022
It is a movie recommender web application which is developed using the Python.

Movie Recommendation 🍿 System Watch Tutorial for this project Source IMDB Movie 5000 Dataset Inspired from this original repository. Features Simple

Kushal Bhavsar 10 Dec 26, 2022
Movie Recommender System

Movie-Recommender-System Movie-Recommender-System is a web application using which a user can select his/her watched movie from list and system will r

1 Jul 14, 2022