Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems.

Overview

Documentation Status

Persine, the Persona Engine

Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems. It has a simple interface and encourages reproducible results. You tell Persine to drive around YouTube and it gives back a spreadsheet of what else YouTube suggests you watch!

Persine => Pers[ona Eng]ine

For example!

People have suggested that if you watch a few lightly political videos, YouTube starts suggesting more and more extreme content – but does it really?

The theory is difficult to test since it involves a lot of boring clicking and YouTube already knows what you usually watch. Persine to the rescue!

  1. Persine starts a new fresh-as-snow Chrome
  2. You provide a list of videos to watch and buttons to click (like, dislike, "next up" etc)
  3. As it watches and clicks more and more, YouTube customizes and customizes
  4. When you're all done, Persine will save your winding path and the video/playlist/channel recommendations to nice neat CSV files.

Beyond analysis, these files can be used to repeat the experiment again later, seeing if recommendations change by time, location, user history, etc.

If you didn't quite get enough data, don't worry – you can resume your exploration later, picking up right where you left off. Since each "persona" is based on Chrome profiles, all your cookies and history will be safely stored until your next run.

An actual example

See Persine in action on Google Colab.

Includes a few examples for analysis, too.

Installation

pip install persine

Persine will automatically install Selenium and BeautifulSoup for browsing/scraping, pandas for data analysis, and pillow for processing screenshots.

You will need to manually install chromedriver to allow Selenium to control Chrome. See details here

Quickstart

In this example, we start a new session by visiting a YouTube video and clicking the "next up" video three times to see where it leads us. We then save the results for later analysis.

from persine import PersonaEngine

engine = PersonaEngine(headless=False)

with engine.persona() as persona:
    persona.run("https://www.youtube.com/watch?v=hZw23sWlyG0")
    persona.run("youtube:next_up#3")
    persona.history.to_csv("history.csv")
    persona.recommendations.to_csv("recs.csv")

We turn off headless mode because it's fun to watch!

More examples, more features, more everything

Find the complete documentation here

Owner
Jonathan Soma
baby data journo wrangler @ledeprogram + @littlecolumns, cat wrangler @cat-republic
Jonathan Soma
A Python scikit for building and analyzing recommender systems

Overview Surprise is a Python scikit for building and analyzing recommender systems that deal with explicit rating data. Surprise was designed with th

Nicolas Hug 5.7k Jan 01, 2023
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 01, 2023
A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (WSDM 2021)

FairGNN A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (

31 Jan 04, 2023
Code for my ORSUM, ACM RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation

HeroGRAPH Code for my ORSUM @ RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation Paper, workshop pro

Qiang Cui 9 Sep 14, 2022
大规模推荐算法库,包含推荐系统经典及最新算法LR、Wide&Deep、DSSM、TDM、MIND、Word2Vec、DeepWalk、SSR、GRU4Rec、Youtube_dnn、NCF、GNN、FM、FFM、DeepFM、DCN、DIN、DIEN、DLRM、MMOE、PLE、ESMM、MAML、xDeepFM、DeepFEFM、NFM、AFM、RALM、Deep Crossing、PNN、BST、AutoInt、FGCNN、FLEN、ListWise等

(中文文档|简体中文|English) 什么是推荐系统? 推荐系统是在互联网信息爆炸式增长的时代背景下,帮助用户高效获得感兴趣信息的关键; 推荐系统也是帮助产品最大限度吸引用户、留存用户、增加用户粘性、提高用户转化率的银弹。 有无数优秀的产品依靠用户可感知的推荐系统建立了良好的口碑,也有无数的公司依

3.6k Dec 30, 2022
Spark-movie-lens - An on-line movie recommender using Spark, Python Flask, and the MovieLens dataset

A scalable on-line movie recommender using Spark and Flask This Apache Spark tutorial will guide you step-by-step into how to use the MovieLens datase

Jose A Dianes 794 Dec 23, 2022
基于个性化推荐的音乐播放系统

MusicPlayer 基于个性化推荐的音乐播放系统 Hi, 这是我在大四的时候做的毕设,现如今将该项目开源。 本项目是基于Python的tkinter和pygame所著。 该项目总体来说,代码比较烂(因为当时水平很菜)。 运行的话安装几个基本库就能跑,只不过里面的数据还没有上传至Github。 先

Cedric Niu 6 Nov 19, 2022
Movies/TV Recommender

recommender Movies/TV Recommender. Recommends Movies, TV Shows, Actors, Directors, Writers. Setup Create file API_KEY and paste your TMDB API key in i

Aviem Zur 3 Apr 22, 2022
Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

57 Nov 03, 2022
A Python implementation of LightFM, a hybrid recommendation algorithm.

LightFM Build status Linux OSX (OpenMP disabled) Windows (OpenMP disabled) LightFM is a Python implementation of a number of popular recommendation al

Lyst 4.2k Jan 02, 2023
Respiratory Health Recommendation System

Respiratory-Health-Recommendation-System Respiratory Health Recommendation System based on Air Quality Index Forecasts This project aims to provide pr

Abhishek Gawabde 1 Jan 29, 2022
reXmeX is recommender system evaluation metric library.

A general purpose recommender metrics library for fair evaluation.

AstraZeneca 258 Dec 22, 2022
Cross-Domain Recommendation via Preference Propagation GraphNet.

PPGN Codes for CIKM 2019 paper Cross-Domain Recommendation via Preference Propagation GraphNet. Citation Please cite our paper if you find this code u

Information Retrieval Group, Wuhan University, China 20 Dec 15, 2022
Graph Neural Network based Social Recommendation Model. SIGIR2019.

Basic Information: This code is released for the papers: Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang and Meng Wang. A Neural Influence Dif

PeijieSun 144 Dec 29, 2022
Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer

Introduction This is the repository of our accepted CIKM 2021 paper "Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Trans

SeqRec 29 Dec 09, 2022
A Library for Field-aware Factorization Machines

Table of Contents ================= - What is LIBFFM - Overfitting and Early Stopping - Installation - Data Format - Command Line Usage - Examples -

1.6k Dec 05, 2022
Deep recommender models using PyTorch.

Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various poin

Maciej Kula 2.8k Dec 29, 2022
The source code for "Global Context Enhanced Graph Neural Network for Session-based Recommendation".

GCE-GNN Code This is the source code for SIGIR 2020 Paper: Global Context Enhanced Graph Neural Networks for Session-based Recommendation. Requirement

98 Dec 28, 2022
Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems.

Persine, the Persona Engine Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems. It has a simple interface a

Jonathan Soma 87 Nov 29, 2022
It is a movie recommender web application which is developed using the Python.

Movie Recommendation 🍿 System Watch Tutorial for this project Source IMDB Movie 5000 Dataset Inspired from this original repository. Features Simple

Kushal Bhavsar 10 Dec 26, 2022